Publications

Results 85926–85950 of 99,299

Search results

Jump to search filters

Sandia National Laboratories, California pollution prevention annual program report for calendar year 2005

Farren, Laurie J.

The annual program report provides detailed information about all aspects of the SNL/CA Pollution Prevention Program for a given calendar year. It functions as supporting documentation to the ''SNL/CA Environmental Management System Program Manual''. The 2005 program report describes the activities undertaken during the past year, and activities planned in future years to implement the Pollution Prevention Program, one of six programs that supports environmental management at SNL/CA.

More Details

Comparison of data from three PIV configurations for a supersonic jet in transonic crossflow

Beresh, Steven J.; Henfling, John F.; Erven, Rocky J.

Particle image velocimetry (PIV) data have been acquired using three different configurations in the far-field of the interaction of a transverse supersonic jet with a transonic crossflow. The configurations included two-dimensional PIV in the centerline streamwise plane at two overlapping stations, as well as stereoscopic PIV in both the same streamwise plane and the crossplane. The streamwise data show the downstream evolution of the interaction whereas the crossplane data directly reveal its vortex structure. The measurement planes intersect at a common line, allowing a comparison of those mean velocity components and turbulent stresses common to all configurations. All data from the streamwise plane agree to within their estimated uncertainties, but data from the crossplane exhibit reduced velocity and turbulent stress magnitudes by a small but significant degree. Additionally, the vertical positions of the peak velocities are slightly nearer the wall for the crossplane configuration. This comparison suggests that routine methods of uncertainty quantification for data used in the validation of computational models may not fully capture the error sources of an experiment.

More Details

A study of binder materials subjected to isentropic compression loading

Baer, M.R.; Hall, Clint A.

Binders such as Estane, Teflon, Kel F and HTPB are typically used in heterogeneous explosives to bond polycrystalline constituents together as an energetic composite. Combined theoretical and experimental studies are underway to unravel the mechanical response of these materials when subjected to isentropic compression loading. Key to this effort is the determination of appropriate constitutive and EOS property data at extremely high stress-strain states as required for detailed mesoscale modeling. The Sandia Z accelerator and associated diagnostics provides new insights into mechanical response of these nonreactive constituents via isentropic ramp-wave compression loading. Several thicknesses of samples, varied from 0.3 to 1.2 mm, were subjected to a ramp load of {approx}42 Kbar over 500 ns duration using the Sandia Z-machine. Profiles of transmitted ramp waves were measured at window interfaces using conventional VISAR. Shock physics analysis is then used to determine the nonlinear material response of the binder materials. In this presentation we discuss experimental and modeling details of the ramp wave loading ICE experiments designed specifically for binder materials.

More Details

Radiation-induced optical response of single-crystal and polycrystalline YAG

Thomes, William J.; Meister, Dorothy C.

Exposure of optical materials to transient-ionizing-radiation fields can give rise to transient and/or permanent photodarkening effects. In laser materials, such as YAG, such induced optical loss can result in significant degradation of the lasing characteristic of the material, making its selection for optical device applications in radiation environments unfeasible. In the present study, the effects of ionizing radiation on the optical response of undoped and 1.1% Nd-doped single-crystal and polycrystalline YAG have been investigated. In the undoped materials it is seen that both laser materials exhibit significant loss at the 1.06 ?m lasing wavelength following exposure to a 40 krad, 30 nsec pulse of gamma radiation. In the undoped single-crystal samples, the transmission loss is initially large but exhibits a rapid recovery. By contrast, the undoped polycrystalline YAG experiences an initial 100% loss in transmission, becoming totally opaque at 1.06 ?m following the radiation pulse. This loss is slow to recover and a large residual permanent photodarkening effect is observed. Nd-doping improves the optical response of the materials in that the radiation-induced optical loss is substantially smaller in both the polycrystalline and single-crystal YAG samples. Preliminary results on the radiation response of elevated-temperature samples will also be reported.

More Details

Design considerations for multi-fiber injection

Thomes, William J.; Dickey, Fred M.

Applications requiring injection of a high-power multimode laser into multiple fibers with equal energies, or specific energy ratios, provide unique design challenges. As with most all systems, engineering trades must balance competing requirements to obtain an optimal overall design. This is particularly true when fabrication issues are considered in the design process. A few of these competing design requirements are discussed in this conceptually simple system. This fiber injection system consists of three components; a refractive beam homogenizer, a diffractive beamsplitter, and a fiber array. We show the design process, starting with first-order design, for an example fiber injection system that couples a high-power YAG laser into seven fibers. Design goals include high efficiency, good beamsplitting uniformity, compact overall size, maximum mode filling of the fibers, and low cost of fabrication and assembly.

More Details

Training programs for the systems approach to nuclear security

Ellis, Doris E.

In support of the US Government and the International Atomic Energy Agency (IAEA) Nuclear Security Programmes, Sandia National Laboratories (SNL) has advocated and practiced a risk-based, systematic approach to nuclear security. The risk equation has been implemented as the basis for a performance methodology for the design and evaluation of Physical Protection Systems against a Design Basis Threat (DBT) for theft or sabotage of nuclear and/or radiological materials. Since integrated systems must include people as well as technology and the man-machine interface, a critical aspect of the human element is to train all stakeholders in nuclear security on the systems approach. Current training courses have been beneficial but are still limited in scope. SNL has developed two primary international courses and is completing development of three new courses that will be offered and presented in the near term. In the long-term, SNL envisions establishing a comprehensive nuclear security training curriculum that will be developed along with a series of forthcoming IAEA Nuclear Security Series guidance documents.

More Details

Simulations of non-uniform embossing : the effect of asymmetric neighbor cavities on polymer flow during nanoimprint lithography

Proposed for publication in the Journal of Vacuum Science and Technology B.

Sun, Amy C.; Schunk, Peter R.

This article presents continuum simulations of viscous polymer flow during nanoimprint lithography (NIL) for embossing tools having irregular spacings and sizes. Simulations vary nonuniform embossing tool geometry to distinguish geometric quantities governing cavity filling order, polymer peak deformation, and global mold filling times. A characteristic NIL velocity predicts cavity filling order. In general, small cavities fill more quickly than large cavities, while cavity spacing modulates polymer deformation mode. Individual cavity size, not total filling volume, dominates replication time, with large differences in individual cavity size resulting in nonuniform, squeeze flow filling. High density features can be modeled as a solid indenter in squeeze flow to accurately predict polymer flow and allow for optimization of wafer-scale replication. The present simulations make it possible to design imprint templates capable of distributing pressure evenly across the mold surface and facilitating symmetric polymer flow over large areas to prevent mold deformation and nonuniform residual layer thickness.

More Details

Direct measurement of transient pulses induced by laser and heavy ion irradiation in deca-nanometer devices

Proposed for publication in the IEEE Transactions on Nuclear Science.

Schwank, James R.; Shaneyfelt, Marty R.

This paper investigates the transient response of 50-nm gate length fully and partially depleted SOI and bulk devices to pulsed laser and heavy ion microbeam irradiations. The measured transient signals on 50-nm fully depleted devices are very short, and the collected charge is small compared to older 0.25-{micro}m generation SOI and bulk devices. We analyze in detail the influence of the SOI architecture (fully or partially depleted) on the pulse duration and the amount of bipolar amplification. For bulk devices, the doping engineering is shown to have large effects on the duration of the transient signals and on the charge collection efficiency.

More Details

Shape memory and pseudoelasticity in metal nanowires

Proposed for publication in Nature Materials.

Zimmerman, Jonathan A.

Structural reorientations in metallic fcc nanowires are controlled by a combination of size, thermal energy, and the type of defects formed during inelastic deformation. By utilizing atomistic simulations, we show that certain fcc nanowires can exhibit both shape memory and pseudoelastic behavior. We also show that the formation of defect-free twins, a process related to the material stacking fault energy, nanometer size scale, and surface stresses is the mechanism that controls the ability of fcc nanowires of different materials to show a reversible transition between two crystal orientations during loading and thus shape memory and pseudoelasticity.

More Details

Spent fuel sabotage aerosol ratio program : FY 2004 test and data summary

Sorenson, Ken B.; Borek, Theodore T.; Dickey, Roy R.; Brockmann, John E.; Lucero, Daniel A.; Gregson, Michael W.; Coats, Richard L.

This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program has been underway for several years. This program provides data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments. The program also provides significant technical and political benefits in international cooperation. We are quantifying the Spent Fuel Ratio (SFR), the ratio of the aerosol particles released from HEDD-impacted actual spent fuel to the aerosol particles produced from surrogate materials, measured under closely matched test conditions, in a contained test chamber. In addition, we are measuring the amounts, nuclide content, size distribution of the released aerosol materials, and enhanced sorption of volatile fission product nuclides onto specific aerosol particle size fractions. These data are the input for follow-on modeling studies to quantify respirable hazards, associated radiological risk assessments, vulnerability assessments, and potential cask physical protection design modifications. This document includes an updated description of the test program and test components for all work and plans made, or revised, during FY 2004. It also serves as a program status report as of the end of FY 2004. All available test results, observations, and aerosol analyses plus interpretations--primarily for surrogate material Phase 2 tests, series 2/5A through 2/9B, using cerium oxide sintered ceramic pellets are included. Advanced plans and progress are described for upcoming tests with unirradiated, depleted uranium oxide and actual spent fuel test rodlets. This spent fuel sabotage--aerosol test program is coordinated with the international Working Group for Sabotage Concerns of Transport and Storage Casks (WGSTSC) and supported by both the U.S. Department of Energy and the Nuclear Regulatory Commission.

More Details
Results 85926–85950 of 99,299
Results 85926–85950 of 99,299