Publications

Results 75701–75725 of 99,299

Search results

Jump to search filters

Optimization strategies for the vulnerability analysis of the electric power grid

Proposed for publication in Siam Journal on Optimization.

Identifying small groups of lines, whose removal would cause a severe blackout, is critical for the secure operation of the electric power grid. We show how power grid vulnerability analysis can be studied as a mixed integer nonlinear programming (minlp) problem. Our analysis reveals a special structure in the formulation that can be exploited to avoid nonlinearity and approximate the original problem as a pure combinatorial problem. The key new observation behind our analysis is the correspondence between the Jacobian matrix (a representation of the feasibility boundary of the equations that describe the flow of power in the network) and the Laplacian matrix in spectral graph theory (a representation of the graph of the power grid). The reduced combinatorial problem is known as the network inhibition problem, for which we present a mixed integer linear programming formulation. Our experiments on benchmark power grids show that the reduced combinatorial model provides an accurate approximation, to enable vulnerability analyses of real-sized problems with more than 10,000 power lines.

More Details

A spatial light modulator for terahertz beams

Proposed for publication in Nature Photonics.

Cich, Michael J.

We design and implement a multipixel spatial modulator for terahertz beams using active terahertz metamaterials. Our first-generation device consists of a 4 x 4 pixel array, where each pixel is an array of subwavelength-sized split-ring resonator elements fabricated on a semiconductor substrate, and is independently controlled by applying an external voltage. Through terahertz transmission experiments, we show that the spatial modulator has a uniform modulation depth of around 40% across all pixels, and negligible crosstalk, at the resonant frequency. This device can operate under small voltage levels, at room temperature, with low power consumption and reasonably high switching speed.

More Details

Results from an analytical investigation of small-scale releases from liquid hydrogen storage systems

Winters, William S.; Houf, William G.

A need exists for developing codes and standards to support the wide-spread delivery of liquid hydrogen bulk fuel and fueling station storage. To develop these codes and standards the consequences of planned and unplanned hydrogen releases must be understood. The systems under consideration are mainly those used in supplying hydrogen for transportation. These systems include production storage tanks, tanker trucks and tanks located at vehicle fueling stations. Typically these systems store hydrogen in the saturated state at approximately 11 atmospheres. Storage vessels are heavily insulated and sometimes actively cooled to minimize the rate of hydrogen boil-off (intended hydrogen release).

More Details

A modified Hopkinson pressure bar experiment to evaluate a damped piezoresistive MEMS accelerometer

Duong, Henry D.

We conducted a series of modified Hopkinson pressure bar (HPB) experiments to evaluate a new, damped, high-shock accelerometer that has recently been developed by PCB Piezotronics Inc. Pulse shapers were used to create a long duration, non-dispersive stress pulse in an aluminum bar that interacted with a tungsten disk at the end of the incident bar. We measured stress at the aluminum bar-disk interface with a quartz gage and measured acceleration at the free-end of the disk with an Endevco brand 7270A and the new PCB 3991 accelerometers. The rise-time of the incident stress pulse in the aluminum bar was long enough and the disk length short enough so that the response of the disk can be approximated closely as rigid-body motion; an experimentally verified analytical model has been shown previously to support this assumption. Since the cross-sectional area and mass of the disk were known, we calculated acceleration of the rigid-disk from the quartz-gage force measurement and Newton's Second Law of Motion. Comparisons of accelerations calculated from the quartz-gage data and measured acceleration data show excellent agreement for acceleration pulses with the PCB accelerometer for peak amplitudes between 4,000 and 40,000 Gs , rise times as short as 40 microsec, and pulse durations between 150 and 320 microsec.

More Details

Tubular ceramic-supported sol-gel silica-based membranes for flue gas carbon dioxide capture and sequestration

Proposed for publication in the Journal of Membrane Science.

Brinker, C.J.

Pure, amine-derivatized and nickel-doped sol-gel silica membranes have been developed on tubular Membralox-type commercial ceramic supports for the purpose of carbon dioxide separation from nitrogen under coal-fired power plant flue gas conditions. An extensive synthetic and permeation test study was carried out in order to optimize membrane CO{sub 2} permeance, CO{sub 2}:N{sub 2} separation factor and resistance against densification. Pure silica membranes prepared under optimized conditions exhibited an attractive combination of CO{sub 2} permeance of 2.0 MPU (1 MPU = 1 cm{sup 3}(STP) {center_dot} cm{sup -2} min{sup -1} atm{sup -1}) and CO{sub 2}:N{sub 2} separation factor of 80 with a dry 10:90 (v/v) CO{sub 2}:N{sub 2} feed at 25 C. However, these membranes exhibited flux decline phenomena under prolonged exposure to humidified feeds, especially in the presence of trace SO{sub 2} gas in the feed. Doping the membranes with nickel (II) nitrate salt was effective in retarding densification, as manifested by combined higher permeance and higher separation factor of the doped membrane compared to the pure (undoped) silica membrane after 168 hours exposure to simulated flue gas conditions.

More Details
Results 75701–75725 of 99,299
Results 75701–75725 of 99,299