Verification for PCMM
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Because digital image correlation (DIC) has become such an important and standard tool in the toolbox of experimental mechanicists, a complete uncertainty quantification of the method is needed. It should be remembered that each DIC setup and series of images will have a unique uncertainty based on the calibration quality and the image and speckle quality of the analyzed images. Any pretest work done with a calibrated DIC stereo-rig to quantify the errors using known shapes and translations, while useful, do not necessarily reveal the uncertainty of a later test. This is particularly true with high-speed applications where actual test images are often less than ideal. Work has previously been completed on the mathematical underpinnings of DIC uncertainty quantification and is already published, this paper will present corresponding experimental work used to check the validity of the uncertainty equations.
Abstract not provided.
A mesoscale dimensional artifact based on silicon bulk micromachining fabrication has been developed and manufactured with the intention of evaluating the artifact both on a high precision coordinate measuring machine (CMM) and video-probe based measuring systems. This hybrid artifact has features that can be located by both a touch probe and a video probe system with a k=2 uncertainty of 0.4 {micro}m, more than twice as good as a glass reference artifact. We also present evidence that this uncertainty could be lowered to as little as 50 nm (k=2). While video-probe based systems are commonly used to inspect mesoscale mechanical components, a video-probe system's certified accuracy is generally much worse than its repeatability. To solve this problem, an artifact has been developed which can be calibrated using a commercially available high-accuracy tactile system and then be used to calibrate typical production vision-based measurement systems. This allows for error mapping to a higher degree of accuracy than is possible with a glass reference artifact. Details of the designed features and manufacturing process of the hybrid dimensional artifact are given and a comparison of the designed features to the measured features of the manufactured artifact is presented and discussed. Measurement results from vision and touch probe systems are compared and evaluated to determine the capability of the manufactured artifact to serve as a calibration tool for video-probe systems. An uncertainty analysis for calibration of the artifact using a CMM is presented.
Forward radiation transport is the problem of calculating the radiation field given a description of the radiation source and transport medium. In contrast, inverse transport is the problem of inferring the configuration of the radiation source and transport medium from measurements of the radiation field. As such, the identification and characterization of special nuclear materials (SNM) is a problem of inverse radiation transport, and numerous techniques to solve this problem have been previously developed. The authors have developed a solver based on nonlinear regression applied to deterministic coupled neutron-photon transport calculations. The subject of this paper is the experimental validation of that solver. This paper describes a series of experiments conducted with a 4.5-kg sphere of alpha-phase, weapons-grade plutonium. The source was measured in six different configurations: bare, and reflected by high-density polyethylene (HDPE) spherical shells with total thicknesses of 1.27, 2.54, 3.81, 7.62, and 15.24 cm. Neutron and photon emissions from the source were measured using three instruments: a gross neutron counter, a portable neutron multiplicity counter, and a high-resolution gamma spectrometer. These measurements were used as input to the inverse radiation transport solver to characterize the solver's ability to correctly infer the configuration of the source from its measured signatures.
Abstract not provided.
We present Poblano v1.0, a Matlab toolbox for solving gradient-based unconstrained optimization problems. Poblano implements three optimization methods (nonlinear conjugate gradients, limited-memory BFGS, and truncated Newton) that require only first order derivative information. In this paper, we describe the Poblano methods, provide numerous examples on how to use Poblano, and present results of Poblano used in solving problems from a standard test collection of unconstrained optimization problems.
Abstract not provided.
The difficulty of calculating the ambient properties of molecular crystals, such as the explosive PETN, has long hampered much needed computational investigations of these materials. One reason for the shortcomings is that the exchange-correlation functionals available for Density Functional Theory (DFT) based calculations do not correctly describe the weak intermolecular van der Waals' forces present in molecular crystals. However, this weak interaction also poses other challenges for the computational schemes used. We will discuss these issues in the context of calculations of lattice constants and structure of PETN with a number of different functionals, and also discuss if these limitations can be circumvented for studies at non-ambient conditions.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.