Publications

Results 73851–73875 of 99,299

Search results

Jump to search filters

Quantifying prediction fidelity in multiscale multiphysics simulations

Adalsteinsson, Helgi; Debusschere, Bert; Najm, Habib N.; Jones, Reese E.; Sargsyan, Khachik

Multiscale multiphysics problems arise in a host of application areas of significant relevance to DOE, including electrical storage systems (membranes and electrodes in fuel cells, batteries, and ultracapacitors), water surety, chemical analysis and detection systems, and surface catalysis. Multiscale methods aim to provide detailed physical insight into these complex systems by incorporating coupled effects of relevant phenomena on all scales. However, many sources of uncertainty and modeling inaccuracies hamper the predictive fidelity of multiscale multiphysics simulations. These include parametric and model uncertainties in the models on all scales, and errors associated with coupling, or information transfer, across scales/physics. This presentation introduces our work on the development of uncertainty quantification methods for spatially decomposed atomistic-to-continuum (A2C) multiscale simulations. The key thrusts of this research effort are: inference of uncertain parameters or observables from experimental or simulation data; propagation of uncertainty through particle models; propagation of uncertainty through continuum models; propagation of information and uncertainty across model/scale interfaces; and numerical and computational analysis and control. To enable the bidirectional coupling between the atomistic and continuum simulations, a general formulation has been developed for the characterization of sampling noise due to intrinsic variability in particle simulations, and for the propagation of both this sampling noise and parametric uncertainties through coupled A2C multiscale simulations. Simplified tests of noise quantification in particle computations are conducted through Bayesian inference of diffusion rates in an idealized isothermal binary material system. A proof of concept is finally presented based on application of the present formulation to the propagation of uncertainties in a model plane Couette flow, where the near wall region is handled with molecular dynamics while the bulk region is handled with continuum methods.

More Details

On the path to exascale

International Journal of Distributed Systems and Technologies

Alvin, Kenneth F.; Barrett, Brian; Brightwell, Ronald B.; Dosanjh, Sudip S.; Geist, Al; Hemmert, Karl S.; Heroux, Michael; Kothe, Doug; Murphy, Richard C.; Nichols, Jeff; Oldfield, Ron; Rodrigues, Arun; Vetter, Jeffrey S.

There is considerable interest in achieving a 1000 fold increase in supercomputing power in the next decade, but the challenges are formidable. In this paper, the authors discuss some of the driving science and security applications that require Exascale computing (a million, trillion operations per second). Key architectural challenges include power, memory, interconnection networks and resilience. The paper summarizes ongoing research aimed at overcoming these hurdles. Topics of interest are architecture aware and scalable algorithms, system simulation, 3D integration, new approaches to system-directed resilience and new benchmarks. Although significant progress is being made, a broader international program is needed.

More Details

Electromagnetic analysis of Forces and torques on the baseline and enhanced ITER shield modules due to plasma disruption

IEEE Transactions on Plasma Science

Coats, Rebecca S.; Pasik, Michael F.; Ulrickson, Michael A.

An electromagnetic analysis is performed on the ITER shield modules under different plasma-disruption scenarios using the OPERA-3d software. The models considered include the baseline design as provided by the International Organization and an enhanced design that includes the more realistic geometrical features of a shield module. The modeling procedure is explained, electromagnetic torques are presented, and results of the modeling are discussed. © 2010 IEEE.

More Details

Oxidation of graphene on metals

Journal of Physical Chemistry C

Starodub, Elena; Bartelt, Norman C.; McCarty, Kevin F.

We use low-energy electron microscopy to investigate how graphene is removed from Ru(0001) and Ir(111) by reaction with oxygen. We find two mechanisms on Ru(0001). At short times, oxygen reacts with carbon monomers on the surrounding Ru surface, decreasing their concentration below the equilibrium value. This undersaturation causes a flux of carbon from graphene to the monomer gas. In this initial mechanism, graphene is etched at a rate that is given precisely by the same nonlinear dependence on carbon monomer concentration that governs growth. Thus, during both growth and etching, carbon attaches and detaches to graphene as clusters of several carbon atoms. At later times, etching accelerates. We present evidence that this process involves intercalated oxygen, which destabilizes graphene. On Ir, this mechanism creates observable holes. It also occurs mostly quickly near wrinkles in the graphene islands, depends on the orientation of the graphene with respect to the Ir substrate, and, in contrast to the first mechanism, can increase the density of carbon monomers. We also observe that both layers of bilayer graphene islands on Ir etch together, not sequentially. © 2010 American Chemical Society.

More Details

Polarization fields in III-nitride nanowire devices

Nanotechnology

Mastro, Michael A.; Simpkins, Blake; Wang, George T.; Hite, Jennifer; Eddy, Charles R.; Kim, Hong Y.; Ahn, Jaehui; Kim, Jihyun

Control of the polarization fields is the most important parameter in designing III-nitride thin-film devices, and herein we show that the polarization fields may be equally, if not more, important in devising III-nitride nanowire devices. One common approach to produce III-nitride nanowires is via a vaporliquidsolid approach that, in general, yields nanowires with the major (growth) axis in the (11̄20) direction. The cross section of this wire is an isosceles triangle with two {1̄101} facets and one {0001} facet. In this work, we analyze the polarization fields that arise in two distinct sets of crystal planes that can manifest in this triangular nanowire geometry: (0001), (1̄10̄1), (̄110̄ 1) or (000̄1), (1̄101), (̄1101). Calculations show that the polarization field at the {0001} facet is much larger than at the two opposing {1̄101} facets, although the sign of the field at each facet has a complicated dependence on the orientation and structure of the nanowire. An undoped nanowire transistor was fabricated that displayed p-type operation based solely on polarization-induced hole carriers at the (000̄1) AlGaN/GaN interface, consistent with our field calculations. © 2010 IOP Publishing Ltd.

More Details

A material frame approach for evaluating continuum variables in atomistic simulations

Journal of Computational Physics

Zimmerman, Jonathan A.; Jones, Reese E.; Templeton, J.A.

We present a material frame formulation analogous to the spatial frame formulation developed by Hardy, whereby expressions for continuum mechanical variables such as stress and heat flux are derived from atomic-scale quantities intrinsic to molecular simulation. This formulation is ideally suited for developing an atomistic-to-continuum correspondence for solid mechanics problems. We derive expressions for the first Piola-Kirchhoff (P-K) stress tensor and the material frame heat flux vector directly from the momentum and energy balances using localization functions in a reference configuration. The resulting P-K stress tensor, unlike the Cauchy expression, has no explicit kinetic contribution. The referential heat flux vector likewise lacks the kinetic contribution appearing in its spatial frame counterpart. Using a proof for a special case and molecular dynamics simulations, we show that our P-K stress expression nonetheless represents a full measure of stress that is consistent with both the system virial and the Cauchy stress expression developed by Hardy. We also present an expanded formulation to define continuum variables from micromorphic continuum theory, which is suitable for the analysis of materials represented by directional bonding at the atomic scale. © 2009 Elsevier Inc.

More Details

Thermomechanical characterization of thermoset urethane shape-memory polymer foams

Journal of Applied Polymer Science

Domeier, Linda A.; Nissen, April; Goods, Steven H.; Whinnery, Leroy L.; McElhanon, James

The shape-memory polymer performance of urethane foams compressed under a variety of conditions was characterized. The foams were water-blown thermosets with a closed-cell structure and ranged in density from about 0.25 to 0.75 g/cm3. Compressive deformations were carried out over a range of strain levels, temperatures, and lateral constraints. Recovery stresses measured between fixed platens were as high as 4 MPa. Recovery strains, measured against loads up to 0.13 MPa, demonstrated the effects of various parameters. The results suggest that compression near the foam glass-transition temperature provided optimal performance. Foams with densities of about 0.5 g/cc and compressed 50% provided a useful balance (time, strain, and load) in the recovery performance. © 2009 Wiley Periodicals, Inc.

More Details

Selection of a representative sample

Journal of Classification

Lee, Herbert K.H.; Taddy, Matthew; Gray, Genetha A.

Sometimes a larger dataset needs to be reduced to just a few points, and it is desirable that these points be representative of the whole dataset. If the future uses of these points are not fully specified in advance, standard decision-theoretic approaches will not work. We present here methodology for choosing a small representative sample based on a mixture modeling approach. © 2010 Springer Science+Business Media, LLC.

More Details

Correlating cookoff violence with pre-ignition damage

Wente, William; Kaneshige, Michael

Predicting the response of energetic materials during accidents, such as fire, is important for high consequence safety analysis. We hypothesize that responses of ener-getic materials before and after ignition depend on factors that cause thermal and chemi-cal damage. We have previously correlated violence from PETN to the extent of decom-position at ignition, determined as the time when the maximum Damkoehler number ex-ceeds a threshold value. We seek to understand if our method of violence correlation ap-plies universally to other explosive starting with RDX.

More Details

Ceci n'est pas une micromachine

Diegert, Carl; Yarberry, Victor R.

The image created in reflected light DIC can often be interpreted as a true three-dimensional representation of the surface geometry, provided a clear distinction can be realized between raised and lowered regions in the specimen. It may be helpful if our definition of saliency embraces work on the human visual system (HVS) as well as the more abstract work on saliency, as it is certain that understanding by humans will always stand between recording of a useful signal from all manner of sensors and so-called actionable intelligence. A DARPA/DSO program lays down this requirement in a current program (Kruse 2010): The vision for the Neurotechnology for Intelligence Analysts (NIA) Program is to revolutionize the way that analysts handle intelligence imagery, increasing both the throughput of imagery to the analyst and overall accuracy of the assessments. Current computer-based target detection capabilities cannot process vast volumes of imagery with the speed, flexibility, and precision of the human visual system.

More Details
Results 73851–73875 of 99,299
Results 73851–73875 of 99,299