Publications

Results 96151–96200 of 99,299

Search results

Jump to search filters

Application of a dimensionless parameter model for Laser Beam Welding

Fuerschbach, Phillip W.

A new dimensionless parameter model for continuous wave laser welding that relates the size of the weld to the energy absorbed by the part is described. The model has been experimentally validated previously through calorimetric determinations of the net heat input and metallographic measurements of the weld size. It will be shown that both the melting efficiency and energy transfer efficiency for LBW are quite variable and need to be considered when selecting processing conditions. Specific applications will be detailed in order to observe the simplicity and value of the model in laser weld process development. It will be shown that by using certain dimensionless parameters one can determine the energy transfer efficiency and thereby correctly select processing conditions that more fully utilize the available laser output power. In applications where minimizing heat input to the surrounding weldment is paramount, the dimensionless parameters can be used to select conditions that maximize melting efficiency.

More Details

Simulation of large systems with neural networks

Paez, Thomas L.

Artificial neural networks (ANNs) have been shown capable of simulating the behavior of complex, nonlinear, systems, including structural systems. Under certain circumstances, it is desirable to simulate structures that are analyzed with the finite element method. For example, when we perform a probabilistic analysis with the Monte Carlo method, we usually perform numerous (hundreds or thousands of) repetitions of a response simulation with different input and system parameters to estimate the chance of specific response behaviors. In such applications, efficiency in computation of response is critical, and response simulation with ANNs can be valuable. However, finite element analyses of complex systems involve the use of models with tens or hundreds of thousands of degrees of freedom, and ANNs are practically limited to simulations that involve far fewer variables. This paper develops a technique for reducing the amount of information required to characterize the response of a general structure. We show how the reduced information can be used to train a recurrent ANN. Then the trained ANN can be used to simulate the reduced behavior of the original system, and the reduction transformation can be inverted to provide a simulation of the original system. A numerical example is presented.

More Details

Observation of excitonic and band-to-band behavior in ordered InGaP{sub 2} alloys

Jones, Eric D.

Photoluminescence measurements on ordered InGaP{sub 2} were studied as a function of temperature, laser power density, and magnetic field. The temperature varied between 1.4 and 300 K, the laser power densities ranged from 10 nW/cm{sup 2} to 20 W/cm{sup 2}, and the maximum magnetic field was 13.6 T. The data show both excitonic and band-to-band behavior, depending upon the incident laser power density. A consistent interpretation of all data leads to a type-II valence-band offset between the ordered domains.

More Details

Quartz resonator fluid monitors for vehicle applications

Cernosek, Richard W.

Thickness shear mode (TSM) quartz resonators operating in a new {open_quotes}Lever oscillator{close_quotes} circuit are used as monitors for critical automotive fluids. These monitors respond to the density and viscosity of liquids contacting the quartz surface. Sensors have been developed for determining the viscosity characteristics of engine lubricating oil, the state-of-charge of lead-acid storage batteries, and the concentration variations in engine coolant.

More Details

Atomic processes in processing plasmas

Riley, Merle E.

The goal of this project is to gain an understanding of the fundamental mechanisms and processes occurring in low pressure, partially ionized plasmas and their interactions with materials. Emphasis is placed on: understanding the basic atomic and molecular physics that is occurring within the plasma bulk and sheath, understanding the relation of the collective plasma dynamics to the internal atomic processes, developing the ability to perform computer simulations of the plasmas as to both Collective dynamics and inclusion of atomic properties, and analyzing the response of the materials to the plasma and how the plasma might be tailored to obtain a given effect at the material surface.

More Details

A review of the technical issues of air ingression during severe reactor accidents

Powers, Dana A.

Severe reactor accident scenarios involving air ingression into the reactor coolant system are described. Evidence from modem reactor accident analyses and from the accident at Three Mile Island show residual fuel will be present in the core region when air ingression is possible. This residual fuel can interact with the air. Exploratory calculations with the MELCOR code of station blackout accidents during shutdown conditions and during operations are used to examine clad oxidation by air and ruthenium release from fuel in air. Extensive ruthenium release is predicted when air ingression rates exceed about 10 moles/s. Past studies of air interactions with irradiated reactor fuel are reviewed. Effects air ingression may have on fission product release, transport, deposition and revaporization are discussed. Perhaps the most important effects of air ingression are expected to be enhanced release of ruthenium from the fuel and the formation of copious amounts of aerosol from uranium oxide vapors. Revaporization of iodine and tellurium retained in the reactor coolant system might be expected.

More Details

Giant effective mass deviations near the magnetic field-induced minigap in double quantum wells

Harff, N.E.

The authors report major deviations in the electron effective mass m* near the partial energy gap, or minigap, formed in strongly coupled double quantum wells (QWs) by an anticrossing of the two QW dispersion curves. The anticrossing and minigap are induced by an in-plane magnetic field B{sub {parallel}} and give rise to large distortions in the Fermi surface and density of states, including a Van Hove singularity. Sweeping B{sub {parallel}} moves the minigap through the Fermi level, with the upper and lower gap edges producing a sharp maximum and minimum in the low-temperature in-plane conductance, in agreement with theoretical calculations. The temperature dependence of Shubnikov-de Haas (SdH) oscillations appearing in a tilted magnetic field yield a decreased m* {le} 1/3 m*{sub GaAs} near the upper gap edge, and indicate an increase in m* near the lower gap edge.

More Details

PP: A graphics post-processor for the EQ6 reaction path code

Stockman, Harlan W.

The PP code is a graphics post-processor and plotting program for EQ6, a popular reaction-path code. PP runs on personal computers, allocates memory dynamically, and can handle very large reaction path runs. Plots of simple variable groups, such as fluid and solid phase composition, can be obtained with as few as two keystrokes. Navigation through the list of reaction path variables is simple and efficient. Graphics files can be exported for inclusion in word processing documents and spreadsheets, and experimental data may be imported and superposed on the reaction path runs. The EQ6 thermodynamic database can be searched from within PP, to simplify interpretation of complex plots.

More Details

Application of a satellite communication and location system for bomb damage assessment

Kern, Jeffrey P.

The Global Verification and Location System (GVLS) is a satellite based communication package proposed for the Global Positioning System (GPS) Block IIR satellites. This system provides the capability to relay bursts of information from small, low power mobile transmitters to command and control facilities. Communication paths through multiple GPS satellites within the field of view allow location of the transmitter using time difference of arrival (TDOA) techniques. Alternately, the transmitter can transmit its own location if known by various other means. Intended applications include determination of the status and location of high-valued assets such as shipments of proliferation-sensitive nuclear materials and treaty-limited items or downed air crews and special operations forces in need of extraction from hostile territory. GVLS provides an enabling technology which can be applied to weapon impact location. The remote transmitter is small and light enough to be integrated into a weapon delivery vehicle, such as a cruise missile, and requires power only during the last second of flight. The antenna is a conformal patch design, therefore minimizing aerodynamic considerations. Precise impact locations are determined by the GVLS system and can be communicated to responsible commands in near real time allowing rapid bomb damage assessment and retargeting without the typical delays of overhead reconnaissance. Since burst data communication is used, weapon status immediately prior to impact can be transmitted providing knowledge of proper arming sequence and other pertinent information. If desired, periodic bursts can be transmitted while in flight, enabling in-course tracking of the weapon. If fully deployed, the GVLS system would consist of communication relays on 24 GPS satellites, five ground stations deployed worldwide, and portable base stations for authorized users to receive and display locations and contents of their transmissions.

More Details

Dual benefit robotics programs at Sandia National Laboratories

Jones, A.T.

Sandia National Laboratories has one of the largest integrated robotics laboratories in the United States. Projects include research, development, and application of one-of-a-kind systems, primarily for the Department of Energy (DOE) complex. This work has been underway for more than 10 years. It began with on-site activities that required remote operation, such as reactor and nuclear waste handling. Special purpose robot systems were developed using existing commercial manipulators and fixtures and programs designed in-house. These systems were used in applications such as servicing the Sandia pulsed reactor and inspecting remote roof bolts in an underground radioactive waste disposal facility. In the beginning, robotics was a small effort, but with increasing attention to the use of robots for hazardous operations, efforts now involve a staff of more than 100 people working in a broad robotics research, development, and applications program that has access to more than 30 robotics systems.

More Details

Micromachined silicon-based analytical microinstruments for space science and planetary exploration

Butler, Michael A.

For future planetary science missions, the authors are developing a series of microinstruments using the techniques of silicon-based micromachining. Conventional instruments such as chemical sensors, charged particle analyzers and mass spectrometers are reduced in size and effective volume to the dimension of cubic centimeters, while maintaining or enhancing performance. Using wafer/wafer bonding techniques, selective chemical etching, thin Film growth, and high resolution lithography, complex three dimensional structures can be assembled. This paper discusses the design, implementation and performance of two new instruments: The Micromachined Bessel Box Auger Electron Spectrometer, and the Mars Soil Chemistry Experiment (MOx).

More Details

Disposal configuration options for future uses of greater confinement disposal at the Nevada Test Site

Gallegos, David P.

The US Department of Energy (DOE) is responsible for disposing of a variety of radioactive and mixed wastes, some of which are considered special-case waste because they do not currently have a clear disposal option. The DOE`s Nevada Field Office contracted with Sandia National Laboratories to investigate the possibility of disposing of some of this special-case waste at the Nevada Test Site (NTS). As part of this investigation, a review of a near-surface and subsurface disposal options that was performed to develop alternative disposal configurations for special-case waste disposal at the NTS. The criteria for the review included (1) configurations appropriate for disposal at the NTS; (2) configurations for disposal of waste at least 100 ft below the ground surface; (3) configurations for which equipment and technology currently exist; and (4) configurations that meet the special requirements imposed by the nature of special-case waste. Four options for subsurface disposal of special-case waste are proposed: mined consolidated rock, mined alluvium, deep pits or trenches, and deep boreholes. Six different methods for near-surface disposal are also presented: earth-covered tumuli, above-grade concrete structures, trenches, below-grade concrete structures, shallow boreholes, and hydrofracture. Greater confinement disposal (GCD) in boreholes at least 100 ft deep, similar to that currently practiced at the GCD facility at the Area 5 Radioactive Waste Management Site at the NTS, was retained as the option that met the criteria for the review. Four borehole disposal configurations are proposed with engineered barriers that range from the native alluvium to a combination of gravel and concrete. The configurations identified will be used for system analysis that will be performed to determine the disposal configurations and wastes that may be suitable candidates for disposal of special-case wastes at the NTS.

More Details

Evaluation of Mil-F-28861 filters and suppliers

Grieco, S.E.

Over the last 20 years, a family of lowpass filters has been developed to eliminate electromechanical interference from power and signal lines in weapon systems. Since its inception, Sprague Electric in North Adams, Massachusetts, has produced this family of components on a line dedicated solely to these devices. Although at least seven other companies produce similar filters, suppliers are unwilling to build small quantities of components in a manner that is incompatible with their standard methods and equipment. The ability to fabricate products in small quantities on an occasional basis is an important factor in component development, and compatibility with commercially available devices enhances that ability. The Mil-F-28861/5 specifications, developed by the Defense Electronic Parts Supply Center, describe filters similar to those of the MC family. This report documents the evaluation of Mil-F-28861/5 filters acquired from the eight suppliers and serves as a basis for further development of specifications and suppliers.

More Details

Ranking of septic tank and drainfield sites using travel time to the groundwater table

Langkopf, Brenda S.

The Environmental Restoration Program at Sandia National Laboratories, New Mexico (SNL/NM) is tasked with performing assessments and cleanup of waste sites that belong to SNL. SNL`s waste sites are divided into several activities. Septic Tanks and Drainfields (STD) is an activity that includes 23 different sites at SNL/NM. All these sites may have released hazardous wastes into the soil from drains or sewers of buildings. The STD sites must be assessed and, if necessary, remediated according to the Resource Conservation and Recovery Act (RCRA) Corrective Action process. A modeling study has been completed to help prioritize the sites for future field investigation based on the risk that each site may pose to human health and the environment. Two of the influences on the risk to human health and environment are addressed in this study--the fluid disposal volume and groundwater depth. These two parameters, as well as several others, were used as input into a computer model to calculate groundwater travel time to the water table. The computer model was based on Darcy`s Law and a simple mass balance. To account for uncertainty in the input parameters, a Monte Carlo approach was used to determine the travel times; 1,000 realizations were completed to determine the travel time for each site. The range assigned to each of the input parameters was sampled according to an assigned statistical distribution using the Latin Hypercube Method to arrive at input for the calculations. The groundwater travel times resulting from these calculations were used to rank the sites for future field investigation.

More Details

Detection optimization using linear systems analysis of a coded aperture laser sensor system

Gentry, S.M.

Minimum detectable irradiance levels for a diffraction grating based laser sensor were calculated to be governed by clutter noise resulting from reflected earth albedo. Features on the earth surface caused pseudo-imaging effects on the sensor`s detector arras that resulted in the limiting noise in the detection domain. It was theorized that a custom aperture transmission function existed that would optimize the detection of laser sources against this clutter background. Amplitude and phase aperture functions were investigated. Compared to the diffraction grating technique, a classical Young`s double-slit aperture technique was investigated as a possible optimized solution but was not shown to produce a system that had better clutter-noise limited minimum detectable irradiance. Even though the double-slit concept was not found to have a detection advantage over the slit-grating concept, one interesting concept grew out of the double-slit design that deserved mention in this report, namely the Barker-coded double-slit. This diffractive aperture design possessed properties that significantly improved the wavelength accuracy of the double-slit design. While a concept was not found to beat the slit-grating concept, the methodology used for the analysis and optimization is an example of the application of optoelectronic system-level linear analysis. The techniques outlined here can be used as a template for analysis of a wide range of optoelectronic systems where the entire system, both optical and electronic, contribute to the detection of complex spatial and temporal signals.

More Details

Standard testing procedures for optical fiber and unshielded twisted pair at Sandia National Laboratories. Revision

Adams, R.L.

This revision updates Sandia`s working standard for testing optical fiber and unshielded twisted pair cables included in the Lab-wide telecommunications cabling infrastructure. The purpose of these standard testing procedures is to deliver to all Sandians a reliable, low-maintenance, state-of-the-art, ubiquitous telecommunications cabling infrastructure capable of satisfying all current and future telecommunication needs.

More Details

A comparison of world-wide uses of severe reactor accident source terms

Powers, Dana A.

The definitions of source terms to reactor containments and source terms to the environment are discussed. A comparison is made between the TID-14844 example source term and the alternative source term described in NUREG-1465. Comparisons of these source terms to the containments and those used in France, Germany, Japan, Sweden, and the United Kingdom are made. Source terms to the environment calculated in NUREG-1500 and WASH-1400 are discussed. Again, these source terms are compared to those now being used in France, Germany, Japan, Sweden, and the United Kingdom. It is concluded that source terms to the containment suggested in NUREG-1465 are not greatly more conservative than those used in other countries. Technical bases for the source terms are similar. The regulatory use of the current understanding of radionuclide behavior varies among countries.

More Details

Experimental results from containment piping bellows subjected to severe accident conditions. Volume 1, Results from bellows tested in `like-new` conditions

Lambert, L.D.

Bellows are an integral part of the containment pressure boundary in nuclear power plants. They are used at piping penetrations to allow relative movement between piping and the containment wall, while minimizing the load imposed on the piping and wall. Piping bellows are primarily used in steel containments; however, they have received limited use in some concrete (reinforced and prestressed) containments. In a severe accident they may be subjected to pressure and temperature conditions that exceed the design values, along with a combination of axial and lateral deflections. A test program to determine the leak-tight capacity of containment penetration bellows is being conducted under the sponsorship of the US Nuclear Regulatory Commission at Sandia National Laboratories. Several different bellows geometries, representative of actual containment bellows, have been subjected to extreme deflections along with pressure and temperature loads. The bellows geometries and loading conditions are described along with the testing apparatus and procedures. A total of thirteen bellows have been tested, all in the `like-new` condition. (Additional tests are planned of bellows that have been subjected to corrosion.) The tests showed that bellows are capable of withstanding relatively large deformations, up to, or near, the point of full compression or elongation, before developing leakage. The test data is presented and discussed.

More Details

An evaluation of the fire barrier system thermo-lag 330-1

Nowlen, Steven P.

This report presents the results of three fire endurance tests and one ampacity derating test set of the fire barrier system Thermo-Lag 330-1 Subliming Coating. Each test was performed using cable tray specimens protected by a nominal three-hour fire barrier envelope comprised of two layers of nominal 1/2 inch thick material. The fire barrier systems for two of the three fire endurance test articles and for the ampacity derating test article were installed in accordance with the manufacturer`s installations procedures. The barrier system for the third fire endurance test article was a full reproduction of one of the original manufacturer`s qualification test articles. This final test article included certain installation enhancements not considered typical of current nuclear power plant installations. The primary criteria for fire endurance performance evaluation was based on cable circuit integrity testing. Secondary consideration was also given to the temperature rise limits set forth in the ASTM E119 standard fire barrier test procedure. All three of the fire endurance specimens failed prematurely. Circuit integrity failures for the two fire endurance test articles with procedures-based installations were recorded at approximately 76 and 59 minutes into the exposures for a 6 inch wide and 12 inch wide cable tray respectively. Temperature excursion failures (single point) for these two test articles were noted at approximately 65 and 56 minutes respectively. The first circuit integrity failure for the full reproduction test article was recorded approximately 119 minutes into the exposure, and the first temperature excursion failure for this test article was recorded approximately 110 minutes into the exposure.

More Details

Layered Electrical Product Application Protocol (AP). Draft: Initial Graphics Exchange Specification (IGES)

O'Connell, Lawrence J.

An application protocol is an information systems engineering view of a specific product. The view represents an agreement on the generic activities needed to design and fabricate the product, the agreement on the information needed to support those activities, and the specific constructs of a product data standard for use in transfering some or all of the information required. This applications protocol describes the data for electrical and electronic products in terms of a product description standard called the Initial Graphics Exchange Specification (IGES). More specifically, the Layered Electrical Product IGES Application Protocol (AP) specifies the mechanisms for defining and exchanging computer-models and their associated data for those products which have been designed in two dimensional geometry so as to be produced as a series of layers in IGES format. The AP defines the appropriateness of the data items for describing the geometry of the various parts of a product (shape and location), the connectivity, and the processing and material characteristics. Excluded is the behavioral requirements which the product was intended to satisfy, except as those requirements have been recorded as design rules or product testing requirements.

More Details

A review of technology for contact protection of remediation manipulators (WHC Issue 39)

Thunborg, S.

Remediation of waste from Underground Storage Tanks (UST) at Hanford will require the use of large remotely controlled equipment. Inherent safety methods need to be identified and incorporated into the retrieval system to prevent contact damage to the UST or to the remediation equipment. This report discusses the requirements for an adequate protection system and reviews the major technologies available for inclusion in a damage protection system. The report proposes that adequate reliability of a protection system can be achieved through the use of two fully-independent subsafety systems. Safety systems technologies reviewed were Force/Torque Sensors, Overload Protection Devices, Ultrasonic Sensors, Capacitance Sensors, Controller Software Limit Graphic Collision Detection, and End Point Tracking. A relative comparison between retrieval systems protection technologies is presented.

More Details

Geomechanics of horizontally-drilled, stress-sensitive, naturally-fractured reservoirs

Holcomb, David J.

Horizontal drilling is a viable approach for accessing hydrocarbons in many types of naturally-fractured reservoirs. Cost-effective improvements in the technology to drill, complete, and produce horizontal wells in difficult geologic environments require a better understanding of the mechanical and fluid-flow behavior of these reservoirs with changes ineffective stress during their development and production history. In particular, improved understanding is needed for predicting borehole stability and reservoir response during pore pressure drawdown. To address these problems, a cooperative project between Oryx Energy Company and Sandia National Laboratories was undertaken to study the effects of rock properties, in situ stress, and changes in effective stress on the deformation and permeability of stress sensitive, naturally-fractured reservoirs. A low value for the proelastic parameter was found, implying that the reservoir should have a low sensitivity to declining pore pressure. A surprisingly diverse suite of fractures was identified from core. From the coring-induced fractures, it was plausible to conclude that the maximum principal stress was in the horizontal plane. Measurements on permeability of naturally fractured rock in a newly-developed experimental arrangement showed that slip on fractures is much more effective inchangingpcrtncability than is normal stress. The intermediate principal stress was found to have a strong effect, on the strength and ductility of the chalk, implying the need for a more sophisticated calculation of borehole stability.

More Details

High frequency current sensors using the Faraday effect in optical fibers

Cernosek, Richard W.

This study investigates the high frequency response of Faraday effect optical fiber current sensors that are bandwidth-limited by the transit time of the light in the fiber. Mathematical models were developed for several configurations of planar (collocated turns) and travelling wave (helical turns) singlemode fiber sensor coils, and experimental measurements verified the model predictions. High frequency operation above 500 MHz, with good sensitivity, was demonstrated for several current sensors; this frequency region was not previously considered accessible by fiber devices. Planar fiber coils in three configurations were investigated: circular cross section with the conductor centered coaxially; circular cross section with the conductor noncentered; and noncircular cross section with arbitrary location of the conductor. The helical travelling wave fiber coils were immersed in the dielectric of a coaxial transmission line to improve velocity phase matching between the field and light. Three liquids (propanol, methanol, and water) and air were used as transmission line dielectric. Complete models, which must account for liquid dispersion and waveguide dispersion from the multilayer dielectric in the transmission line, were developed to describe the Faraday response of the travelling wave sensors. Other travelling wave current sensors with potentially greater Faraday sensitivity, wider bandwidth and smaller size are investigated using the theoretical models developed for the singlemode fibers coils.

More Details

Characteristics of special-case wastes potentially destined for disposal at the Nevada Test Site

Price, Laura L.

The U.S. Department of Energy (DOE) is responsible for disposing of a variety of radioactive and mixed wastes, some of which are considered special-case waste because they do not currently have a clear disposal option. It may be possible to dispose of some of the DOE`s special-case waste using greater confinement disposal techniques at the Nevada Test Site (NTS). The DOE asked Sandia National Laboratories to investigate this possibility by performing system configuration analyses. The first step in performing system configuration analyses is to estimate the characteristics of special-case waste that might be destined for disposal at the NTS. The objective of this report is to characterize this special-case waste based upon information available in the literature. No waste was sampled and analyzed specifically for this report. The waste compositions given are not highly detailed, consisting of grains and curies of specific radionuclides per cubic meter. However, such vague waste characterization is adequate for the purposes of the system configuration task. In some previous work done on this subject, Kudera et al. [1990] identified nine categories of special-case radioactive waste and estimated volumes and activities for these categories. It would have been difficult to develop waste compositions based on the categories proposed by Kudera et al. [1990], so we created five groups of waste on which to base the waste compositions. These groups are (1) transuranic waste, (2) fission product waste, (3) activation product waste, (4) mobile/volatile waste, and (5) sealed sources. The radionuclides within a given group share common characteristics (e.g., alpha-emitters, heat generators), and we believe that these groups adequately represent the DOE`s special-case waste potentially destined for greater confinement disposal at the NTS.

More Details

Proceedings of the DOE/SNL/EPRI sponsored Reactor Pressure Vessel Thermal Annealing Workshop. Volume 1

Rosinski, S.T.

The purpose of the Reactor Pressure vessel Thermal Annealing Workshop was to provide a forum for US utilities and interested parties to discuss relevant experience and issues and identify potential solutions/approaches related to: An understanding of the potential benefits of thermal annealing for US commercial reactors; on-going technical research activities; technical aspects of a generic, full-scale, in-place vessel annealing demonstration; and the impact of economic, regulatory, and technical issues on the application of thermalannealingtechnology to US plants. Experts from the international nuclear reactor community were brought together to discuss issues regarding application of thermal annealing technology in the US and identify the steps necessary to commercialize this technology for US reactors. These proceedings contain all presentation materials discussed during the Workshop. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

More Details

Nonlinear generalized functions and nonconservative shock simulations

Baty, Roy S.

This SAND report summarizes the work completed for a Novel Project Research and Development LDRD project. In this research effort, new mathematical techniques from the theory of nonlinear generalized functions were applied to compute solutions of nonlinear hyperbolic field equations in nonconservative form. Nonconservative field equations contain products of generalized functions which are not defined in classical mathematics. Because of these products, traditional computational schemes are very difficult to apply and can produce erroneous numerical results. In the present work, existing first-order computational schemes based on results from the theory of nonlinear generalized functions were applied to simulate numerically two model problems cast in nonconservative form. From the results of these computational experiments, a higher-order Godunov scheme based on the piecewise parabolic method was proposed and tested. The numerical results obtained for the model problems are encouraging and suggest that the theory of nonlinear generalized functions provides a powerful tool for studying the complicated behavior of nonlinear hyperbolic field equations.

More Details

Design verification activities in the Exploratory Studies Facility Starter Tunnel at Yucca Mountain

Pott, John

In situ design verification activities are being conducted in the North Ramp Starter Tunnel of the Yucca Mountain Project Exploratory Studies Facility. These activities include: monitoring the construction blasting, evaluating the damage to the rock mass associated with construction, assessing the rock mass quality surrounding the tunnel, monitoring the performance of the installed ground support, and monitoring the stability of the tunnel. In this paper, examples of the data that have been collected and preliminary conclusions from the data are presented.

More Details

Assembly partitioning with a constant number of translations

Wilson, Rodney K.

The authors consider the following problem that arises in assembly planning: given an assembly, identify a subassembly that can be removed as a rigid object without disturbing the rest of the assembly. This is the assembly partitioning problem. Specifically, they consider planar assemblies of simple polygons and subassembly removal paths consisting of a single finite translation followed by a translation to infinity. They show that such a subassembly and removal path can be determined in O(n{sup 1.46}N{sup 6}) time, where n is the number of polygons in the assembly and N is the total number of edges and vertices of all the parts together. They then extend this formulation to removal paths consisting of a small number of finite translations, followed by a translation to infinity. In this case the algorithm runs in time polynomial in the number of parts, but exponential in the number of translations a path may contain.

More Details

The role of high pressure in the study and applications of the ferroelectric polymer polyvinylidene fluoride and its copolymers

Samara, George A.

Effects of frequency, temperature and hydrostatic pressure on dielectric properties, molecular relaxations, and phase transitions of PVDF and a copolymer with 30 mol % trifluoroethylene are discussed. Pressure causes large slowing down of the {beta} molecular relaxations as well as large increases in the, ferroelectric transition temperatures and melting points, but the magnitudes of the effects are different for the different transitions. These effects can be understood in terms of pressure-induced hindrance of the molecular motions and/or reorientations. A unique application of these polymers as time-resolved dynamic stress gauges based on PVDF studies under very high pressure shock compression is discussed.

More Details

Comparison of model predictions with measurements using the improved spent fuel attribute tester

Dupree, S.A.

Design improvements for the International Atomic Energy Agency`s Spent Fuel Attribute Tester, recommended on the basis of an optimization study, were incorporated into a new instrument fabricated under the Finnish Support Programme. The new instrument was tested at a spent fuel storage pool on September 8 and 9, 1993. The result of two of the measurements have been compared with calculations. In both cases the calculated and measured pulse height spectra in good agreement and the {sup 137}Cs gamma peak signature from the target spent fuel element is present.

More Details

Design and implementation of a Synthetic Aperture Radar for Open Skies (SAROS) aboard a C-135 aircraft

Cooper, D.W.; Murphy, M.; Rimmel, G.

NATO and former Warsaw Pact nations have agreed to allow overflights of their countries in the interest of easing world tension. The United States has decided to implement two C-135 aircraft with a Synthetic Aperture Radar (SAR) that has a 3-meter resolution. This work is being sponsored by the Defense Nuclear Agency (DNA) and will be operational in Fall 1995. Since the SAR equipment must be exportable to foreign nations, a 20-year-old UPD-8 analog SAR system was selected as the front-end and refurbished for this application by Loral Defense Systems. Data processing is being upgraded to a currently exportable digital design by Sandia National Laboratories. Amplitude and phase histories will be collected during these overflights and digitized on VHS cassettes. Ground stations will use reduction algorithms to process the data and convert it to magnitude-detected images for member nations. System Planning Corporation is presently developing a portable ground station for use on the demonstration flights. Aircraft integration into the C-135 aircraft is being done by the Air Force at Wright-Patterson AFB, Ohio.

More Details

Development of solid state moisture sensors for semiconductor fabrication applications

Pfeifer, Kent B.

We describe the design and fabrication of two types of solid state moisture sensors, and discuss the results of an evaluation of the sensors for the detection of trace levels of moisture in semiconductor process gases. The first sensor is based on surface acoustic wave (SAW) technology. A moisture sensitive layer is deposited onto a SAW device, and the amount of moisture adsorbed on the layer produces a proportional shift in the operating frequency of the device. Sensors based on this concept have excellent detection limits for moisture in inert gas (100 ppb) and corrosive gas (150 ppb in HCl). The second sensor is a simple capacitor structure that uses porous silicon as a moisture-sensitive dielectric material. The detection limits of these sensors for moisture in inert gas are about 700 ppb prior to HCl exposure, and about 7 ppm following HCl exposure.

More Details

Can information surety be assessed with high confidence?

Lim, J.J.; Fletcher, S.K.; Halbgewachs, R.D.; Jansma, R.M.; Sands, P.D.; Watterberg, P.A.; Wyss, G.D.

Several basic reasons are given to support the position that an integrated, systems methodology entailing probabilistic assessment offers the best means for addressing the problems in software safety. The recognized hard problems in software safety, or safety per se, and some of the techniques for hazard identification and analysis are then discussed relative to their specific strengths and limitations. The paper notes that it is the combination of techniques that will lead to safer systems, and that more experience, examples, and applications of techniques are needed to understand the limits to which software safety can be assessed. Lastly, some on-going project work at Sandia National Laboratories on developing a solution methodology is presented

More Details

Application of network technology to Remote Monitoring System

Johnson, C.S.; Sorokowski, D.L.; Veevers, K.

The Australian Safeguards Office (ASO) and the US Department of Energy (DOE) have sponsored work under a bilateral agreement to implement a Remote Monitoring System (RMS) at an Australian nuclear site operated by the Australian Nuclear Science and Technology Organization (ANSTO). The RMS, designed by Sandia National Laboratories (SNL), was installed in February 1994 at the Dry Spent Fuel Storage Facility (DSFSF) located at Lucas Heights, Australia. The RMS was designed to test a number of different concepts that would be useful for unattended remote monitoring activities. The DSFSF located in Building 27 is a very suitable test site for a RMS. The RMS uses a network of low cost nodes to collect data from a number of different sensors and security devices. Different sensors and detection devices have been installed to study how they can be used to complement each other for C/S applications. The data collected from the network will allow a comparison of how the various types of sensors perform under the same set of conditions. A video system using digital compression collects digital images and stores them on a hard drive and a digital optical disk. Data and images from the storage area are remotely monitored via telephone from Canberra, Australia and Albuquerque, NM, USA. These remote monitoring stations operated by ASO and SNL respectively, can retrieve data and images from the RMS computer at the DSFSF. The data and images are encrypted before transmission. The Remote Monitoring System field tests have been operational for six months with good test results. Sensors have performed well and the digital images have excellent resolution. The hardware and software have performed reliably without any major difficulties. This paper summarizes the highlights of the prototype system and the ongoing field tests.

More Details

An image processing system for the monitoring of special nuclear material and personnel

Thai, Tan Q.

An important aspect of insider protection in production facilities is the monitoring of the movement of special nuclear material (SNM) and personnel. One system developed at Sandia National Labs for this purpose is the Personnel and Material Tracking System (PAMTRAK). PAMTRAK can intelligently integrate different sensor technologies and the security requirements of a facility to provide a unique capability in monitoring and tracking SNM and personnel. Currently many sensor technologies are used to track the location of personnel and SNM inside a production facility. These technologies are generally intrusive; they require special badges be worn by personnel, special tags be connected to material, and special detection devices be mounted in the area. Video technology, however, is non-intrusive because it does not require that personnel wear special badges or that special tags be attached to SNM. Sandia has developed a video-based image processing system consisting of three major components: the Material Monitoring-Subsystem (MMS), the Personnel Tracking Subsystem (PTS) and the Item Recognition Subsystem (IRS). The basic function of the MMS is to detect movements of SNM, that occur in user-defined regions of interest (ROI) from multiple cameras; these ROI can be of any shape and size. The purpose of the PTS is to track location of personnel in an area using multiple cameras. It can also be used to implement the two-person rule or to detect unauthorized personnel in a restricted area. Finally, the IRS can be used for the recognition and inventory of SNM in a working area. It can also generate a log record on the status of each SNM. Currently the MMS is integrated with PAMTRAK to complement other monitoring technologies in the system. The paper will discuss the system components and their implementations, and describe current enhancements as well as future work.

More Details

Sticky foam technology for less-than-lethal force situations

Goolsby, Tommy D.W.

Sticky foam is an extremely tacky, tenacious material used to entangle and impair an individual. It was developed at Sandia National Laboratories (SNL) in the late 1970`s for usage in nuclear safeguards and security applications. In late 1992, the National Institute of Justice (NIJ), the research arm of the Department of Justice, began a project with SNL to determine the applicability of sticky foam for law enforcement usage. The objectives of the project were to develop a dispenser capable of firing sticky foam, to conduct an extensive toxicology review of sticky foam (formulation SF-283), to test the developed dispenser and sticky foam effectiveness on SNL volunteers acting out prison and law enforcement scenarios, and to have the dispenser and sticky foam further evaluated by correctional representatives. This paper discusses the results of the project.

More Details

Characteristics of oxynitrides grown in N{sub 2}O

Fleetwood, Daniel M.

MOS oxides have been fabricated by oxidation of silicon in N{sub 2}O. Processes studied include oxidation in N{sub 2}O alone, and two-step oxidation in O{sub 2} followed by N{sub 2}O. For both oxides, a nitrogen-rich layer with a peak N concentration of {approximately} 0.5 at. % is observed at the Si-SiO{sub 2} interface with SIMS. Electrical characteristics of N{sub 2}O oxides, such as breakdown and defect generation, are generally improved, especially for the two-step process. Drawbacks typically associated with NH{sub 3}-nitrided oxides such as high fixed oxide charge and enhanced electron trapping, are not observed in N{sub 2}O oxides, which is probably due to their smaller nitrogen content.

More Details

Sandia Explosive Inventory and Information System

Mcgahan, Dyan A.

The Explosive Inventory and Information System (EIS) is being developed and implemented by Sandia National Laboratories (SNL) to incorporate a cradle to grave structure for all explosives and explosive containing devices and assemblies at SNL from acquisition through use, storage, reapplication, transfer or disposal. The system does more than track all material inventories. It provides information on material composition, characteristics, shipping requirements; life cycle cost information, plan of use; and duration of ownership. The system also provides for following the processes of explosive development; storage review; justification for retention; Resource, Recovery and Disposition Account (RRDA); disassembly and assembly; and job description, hazard analysis and training requirements for all locations and employees involved with explosive operations. In addition, other information systems will be provided through the system such as the Department of Energy (DOE) and SNL Explosive Safety manuals, the Navy`s Department of Defense (DoD) Explosive information system, and the Lawrence Livermore National Laboratories (LLNL) Handbook of Explosives.

More Details

A method for reducing encapsulation stress to ferrite pot cores

Sanchez, Robert O.

This paper describes a method of reducing the mechanical stress caused when a ferrite pot core is encapsulated in a rigid epoxy. the stresses are due to the differences of coefficient of thermal expansion between the two materials. A stress relief medium, phenolic micro-balloon-filled, syntactic polysulfide, is molded into the shape of the pot core. The molded polysulfide is bonded to the core prior to encapsulation. The new package design has made a significant difference in the ability to survive temperature cycles.

More Details

Defense Programs Transportation Risk Assessment

Clauss, David B.

This paper provides an overview of the methodology used in a probabilistic transportation risk assessment conducted to assess the probabilities and consequences of inadvertent dispersal of radioactive materials arising from severe transportation accidents. The model was developed for the Defense Program Transportation Risk Assessment (DPTRA) study. The analysis incorporates several enhancements relative to previous risk assessments of hazardous materials transportation including newly-developed statistics on the frequencies and severities of tractor semitrailer accidents and detailed route characterization using the 1990 Census data.

More Details

Tamper indicating packaging

Baumann, M.J.; Bartberger, J.C.; Welch, T.D.

Protecting sensitive items from undetected tampering in an unattended environment is crucial to the success of non-proliferation efforts relying on the verification of critical activities. Tamper Indicating Packaging (TIP) technologies are applied to containers, packages, and equipment that require an indication of a tamper attempt. Examples include: the transportation and storage of nuclear material, the operation and shipment of surveillance equipment and monitoring sensors, and the retail storage of medicine and food products. The spectrum of adversarial tampering ranges from attempted concealment of a pin-hole sized penetration to the complete container replacement, which would involve counterfeiting efforts of various degrees. Sandia National Laboratories (SNL) has developed a technology base for advanced TIP materials, sensors, designs, and processes which can be adapted to various future monitoring systems. The purpose of this technology base is to investigate potential new technologies, and to perform basic research of advanced technologies. This paper will describe the theory of TIP technologies and recent investigations of TIP technologies at SNL.

More Details

Safeguards equipment of the future integrated monitoring systems and remote monitoring

Sonnier, C.S.; Johnson, C.S.

Becoming aware of the significant events of the past four years and their effect on the expectations to international safeguards, it is necessary to reflect on which direction the development of nuclear safeguards in a new era needs to take and the implications. The lime proven monitoring techniques, based on quantitative factor`s and demonstrated universal application, have shown their merit. However, the new expectations suggest a possibility that a future IAEA safeguards system could rely more heavily on the value of a comprehensive, transparent and open implementation regime. Within such a regime, the associated measures need to be determined and technological support identified. This paper will identify the proven techniques which, with appropriate implementation support, could most quickly make available additional measures for a comprehensive, transparent and open implementation regime. In particular, it will examine the future of Integrated Monitoring Systems and Remote Monitoring in international safeguards, including technical and other related factors.

More Details
Results 96151–96200 of 99,299
Results 96151–96200 of 99,299