Publications

Results 94101–94150 of 99,299

Search results

Jump to search filters

Comparison of an impedance heating system to mineral insulated heat trace for power tower applications

Pacheco, James E.

A non-conventional type of heating system is being tested at Sandia National Laboratories for solar thermal power tower applications. In this system, called impedance heating, electric current flows directly through the pipe to maintain the desired temperature. The pipe becomes the resistor where the heat is generated. Impedance heating has many advantages over previously used mineral insulated (MI) heat trace. An impedance heating system should be much more reliable than heat trace cable since delicate junctions and cabling are not used and the main component, a transformer, is inherently reliable. A big advantage of impedance heating is the system can be sized to rapidly heat up the piping to provide rapid response times necessary in cyclic power plants such as solar power towers. In this paper, experimental results from testing an impedance heating system are compared to MI heat trace. The authors found impedance heating was able to heat piping rapidly and effectively. There were not significant stray currents and impedance heating did not affect instrumentation.

More Details

Fabrication of large area gratings with sub-micron pitch using mold micromachining

Fleming, J.G.

In this work, the authors have applied mold micromachining and standard photolithographic techniques to the fabrication of parts integrated with 0.4 micron pitch diffraction gratings. In principle, the approach should be scaleable to considerably finer pitches. They have achieved this by relying on the thickness of deposited or grown films, instead of photolithography, to determine the grating pitch. The gratings can be made to extend over large areas and the entire process is compatible with batch processing. Literally thousands of parts can be batch fabricated from a single lot of six inch wafers. In the first stage of the process they fabricate a planarized silicon dioxide pad over which the silicon nitride wave guide runs. The grating is formed by first patterning and etching single crystalline silicon to form a series of trenches with well defined pitch. The silicon bounding the trenches is then thinned by thermal oxidation followed by stripping of the silicon dioxide. The trenches are filled by a combination of polysilicon depositions and thermal oxidations. Chemical mechanical polishing (CMP) is used to polish back these structures resulting in a series of alternating 2000 {angstrom} wide lines of silicon and silicon dioxide. The thickness of the lines is determined by the oxidation time and the polysilicon deposition thickness. The silicon lines are selectively recessed by anisotropic reactive ion etching, thus forming the mold for the grating. The mold is filled with low stress silicon nitride deposited by chemical vapor deposition. A wave guide is then patterned into the silicon nitride and the mold is locally removed by a combination of deep silicon trench etching and wet KOH etching. This results in a suspended diffraction grating/membrane over the KOH generated pit.

More Details

Synthesis of nanocrystalline barium-hexaferrite from nanocrystalline goethite using the hydrothermal method: Particle size evolution and magnetic properties

Voigt, James A.

To characterize particle size/magnetic property relationships, 9 to 50 nm in diameter barium hexaferrite, BaFe{sub 12}O{sub 19} (BHF), particles were prepared using a new synthesis route. By replacing the conventional 50 to 100 nm particles of goethite with nanocrystalline goethite produced via the microwave anneal method of Knight and Sylva, nanocrystalline BHF was synthesized using the hydrothermal method. Evolution of particle size and morphology with respect to concentration and heat treatment time is reported. Hysteresis properties, including coercivity (0.2--1.0 kOe), magnetization saturation (0.1--33.4 emu/g), and magnetization remanence (0.004--22.5 emu/g) are discussed as a function of particle size. The magnetization saturation and remanence of the 7 nm particles is nearly zero, suggesting the superparamagnetic threshold size for BHF is around this size. In addition, the equilibrium morphology of BHF crystals was calculated to be truncated hexagonal prisms which was verified by experiment, and the isoelectric point, pH of 4.1, was measured for 18 nm BHF particles.

More Details

Electrokinetic demonstration at Sandia National Laboratories: Use of transference numbers for site characterization and process evaluation

Lindgren, Eric

Electrokinetic remediation is generally an in situ method using direct current electric potentials to move ionic contaminants and/or water to collection electrodes. The method has been extensively studied for application in saturated clayey soils. Over the past few years, an electrokinetic extraction method specific for sandy, unsaturated soils has been developed and patented by Sandia National Laboratories. A RCRA RD&D permitted demonstration of this technology for the in situ removal of chromate contamination from unsaturated soils in a former chromic acid disposal pit was operated during the summer and fall of 1996. This large scale field test represents the first use of electrokinetics for the removal of heavy metal contamination from unsaturated soils in the United States and is part of the US EPA Superfund Innovative Technology Evaluation (SITE) Program. Guidelines for characterizing a site for electrokinetic remediation are lacking, especially for applications in unsaturated soil. The transference number of an ion is the fraction of the current carried by that ion in an electric field and represents the best measure of contaminant removal efficiency in most electrokinetic remediation processes. In this paper we compare the transference number of chromate initially present in the contaminated unsaturated soil, with the transference number in the electrokinetic process effluent to demonstrate the utility of evaluating this parameter.

More Details

The residuals analysis project: Evaluating disposal options for treated mixed low-level waste

Waters, Robert D.

For almost four years, the U.S. Department of Energy (DOE) through its Federal Facility Compliance Act Disposal Workgroup has been working with state regulators and governors` offices to develop an acceptable configuration for disposal of its mixed low-level waste (MLLW). These interactions have resulted in screening the universe of potential disposal sites from 49 to 15 and conducting ``performance evaluations`` for those fifteen sites to estimate their technical capabilities for disposal of MLLW. In the residuals analysis project, we estimated the volume of DOE`s MLLW that will require disposal after treatment and the concentrations of radionuclides in the treated waste. We then compared the radionuclide concentrations with the disposal limits determined in the performance evaluation project for each of the fifteen sites. The results are a scoping-level estimate of the required volumetric capacity for MLLW disposal and the identification of waste streams that may pose problems for disposal based on current treatment plans. The analysis provides technical information for continued discussions between the DOE and affected States about disposal of MLLW and systematic input to waste treatment developers on disposal issues.

More Details

Initial development of efficient, low-debris laser targets for the Sandia soft x-ray projection lithography effort

Rockett, Paul D.

During the fiscal years 92-94 a joint group from Sandia/New Mexico and Sandia/California studied the development of new laser-plasma targets for projection x-ray or EUV (extreme ultraviolet) lithography. Our experimental and theoretical analyses incorporated target design as an integral part of the lithographic optical system. Targets studied included thick solid targets, thin-foil metal-coated targets, and cryogenic targets. Our complete measurement suite consisted of x-ray conversion efficiency measurements, source size imaging, source x-ray angular distribution measurements, debris collection, and source EUV spectrum. Target evaluation also included the variation of laser characteristics, such as, laser intensity, spot size, wavelength, pulselength, and pulseshape. Over the course of these experiments we examined targets using KrF (248nm), XeCl (308nm), and CO{sub 2} (10.6 {mu}m) lasers. While debris issues now dominate research in this area, final details were concluded on our understanding of material spectra and radiation transport of 13 run light in laser-plasmas. Additionally, conclusive results were obtained with 308 rim light, showing the pulselength threshold below which plumes no longer limited the transmission of (and thus the conversion efficiency to) 13 nm radiation.

More Details

Metal-loaded polymer films for chemical sensing of ES&H-related pollutants

Martin, Steve W.

More Details

MC4523 Sealed Cap: Component & characteristics development report

Begeal, D.R.

The MC4523 Sealed Cap is a WW42C1 Percussion Primer that is pressed into a steel cylinder. Hermaticity of the input end is then provided by welding a thin steel closure disk on the input end of the MC4523. Thus, the user is provided with a component that is prequalified in terms of ignition sensitivity and hermeticity. The first customer is the Thermal Battery Department (1522). The MC4523 will be used on the MC2736A Thermal Battery which in turn will be used on the W78 JTA. Attachment of the MC4523 to the battery is with a laser weld. Combined test results of four production lots at a commercial supplier (PPI, TMS, WR1, and WR2) show an all-fire ignition sensitivity (.999 @ 50%) of approximately 60 millijoules of mechanical energy with a 2.2 gram firing pin. The firing pin had an impact tip with a radius of 0.020 inch. This firing pin is like that to be used in the W78 JTA application. Approximately 112 millijoules of mechanical energy will be supplied in the application, thus the design margin is more than adequate.

More Details

Mine-induced sinkholes over the U.S. Strategic Petroleum Reserve (SPR) Storage Facility at Weeks Island, Louisiana: geological mitigation and environmental monitoring

Neal, J.T.

A sinkhole formed over the former salt mine used for crude oil storage by the U.S. Strategic Petroleum Reserve at Weeks Island, Louisiana. This created a dilemma because in-mine grouting was not possible, and external grouting, although possible, was impractical. However, environmental protection during oil withdrawal and facility decommissioning was considered critical and alternative solutions were essential. Mitigation of, the sinkhole growth over the salt mine was accomplished by injecting saturated brine directly into the sinkhole throat, and by constructing a cylindrical freeze curtain around and into the dissolution orifice at the top of the salt dome. These measures vastly reduced the threat of major surface collapse around the sinkhole during oil transfer and subsequent brine backfill. The greater bulk of the crude oil was removed from the mine during 1995-6. Final skimming operations will remove residual oil trapped in low spots, concurrent with initiating backfill of the mine with saturated brine. Environmental monitoring during 1995-9 will assure that environmental surety is achieved.

More Details

Water adsorption in interfacial silane layers by neutron reflection

Kent, Michael S.

It is well known that water plays an important role in the degradation of adhesive strength between a wide variety of materials. It is also well established that silane coupling agents can provide excellent bond durability in aqueous environments. However, the detrimental effects of interfacial water are not limited to adhesive failure. The present study was motivated by concerns in the printed circuit board industry regarding the loss of electrical resistance, as well as adhesive failure, which may arise from water at epoxy/silane/E-glass interphases. The commercial silane finish used in this study provides excellent adhesive strength between epoxy and E-glass, and remarkable bond durability even after extensive conditioning in boiling water or a pressure cooker. However, circuit boards with this finish do not perform well in insulation resistance testing following such conditioning. The goal of this work is to develop a detailed understanding of the mechanism by which water interacts with a resin/silane interphase, with a focus on the consequences for both electrical resistance and adhesion. The present report focuses on the measurement of profiles of adsorbed moisture by neutron reflection.

More Details

Performance planning and measurement for DOE EM-International Technology Integration Program. A report on a performance measurement development workshop for DOE`s environmental management international technology integration program

Jordan, Gretchen B.

This report describes the process and results from an effort to develop metrics for program accomplishments for the FY 1997 budget submission of the U.S. Department of Energy Environmental Management International Technology Integration Program (EM-ITI). The four-step process included interviews with key EM-ITI staff, the development of a strawman program logic chart, and all day facilitated workshop with EM-ITI staff during which preliminary performance plans and measures were developed and refined, and a series of follow-on discussions and activities including a cross-organizational project data base. The effort helped EM-ITI to crystallize and develop a unified vision of their future which they can effectively communicate to their own management and their internal and external customers. The effort sets the stage for responding to the Government Performance and Results Act. The metrics developed may be applicable to other international technology integration programs. Metrics were chosen in areas of eight general performance goals for 1997-1998: (1) number of forums provided for the exchange of information, (2) formal agreements signed, (3) new partners identified, (4) customers reached and satisfied, (5, 6) dollars leveraged by EM technology focus area and from foreign research, (7) number of foreign technologies identified for potential use in remediation of DOE sites, and (8) projects advanced through the pipeline.

More Details

Final report for LDRD project {open_quotes}A new approach to protein function and structure prediction{close_quotes}

Phillips, Cynthia A.

This report describes the research performed under the laboratory-Directed Research and Development (LDRD) grant {open_quotes}A new approach to protein function and structure prediction{close_quotes}, funded FY94-6. We describe the goals of the research, motivate and list our improvements to the state of the art in multiple sequence alignment and phylogeny (evolutionary tree) construction, but leave technical details to the six publications resulting from this work. At least three algorithms for phylogeny construction or tree consensus have been implemented and used by researchers outside of Sandia.

More Details

Degradation of the materials of construction in Li-ion batteries

Braithwaite, J.W.

The primary current-collector materials being used in lithium-ion cells are susceptible to environmental degradation: aluminum to pitting corrosion and copper to environmentally assisted cracking. Pitting occurs at the highly oxidizing potentials associated with the positive-electrode charge condition. However, the pitting mechanism is more complex than that typically observed in aqueous systems in that the pits are filled with a mixed metal/oxide product and exist as mounds or nodules on the surface. Electrochemical impedance spectroscopy was shown to be an effective analytical tool for quantifying and verifying aluminum corrosion behavior. Two fluorocarbon-based coatings were shown to improve the resistance of Al to pitting attack. Detailed x-ray photoelectron spectroscopy (XPS) surface analyses showed that there was very little difference in the films observed after simple immersion in either PC:DEC or EC:DMC electrolytes versus those following electrical cycling. Li and P are the predominant surface species. Finally, environmental cracking of copper can occur at or near the lithium potential and only if specific metallurgical conditions exist (work-hardening and large grain size).

More Details

Hydrogen generation by metal corrosion in simulated Waste Isolation Pilot Plant environments. Final report

Brush, Laurence H.

The corrosion and gas-generation characteristics of four material types: low-carbon steel (the current waste packaging material for the Waste Isolation Pilot Plant), Cu-base and Ti-base (alternative packaging) materials, and Al-base (simulated waste) materials were determined in both the liquid and vapor phase of Brine A, a brine representative of an intergranular Salado Formation brine. Test environments consisted primarily of anoxic brine with overpressures of N{sub 2}, CO{sub 2}, H{sub 2}S, and H{sub 2}. Limited tests of low-carbon steel were also performed in simulated-backfill environments and in brine environments with pH values ranging from 3 to 11. Low-carbon steel reacted at a slow, measurable rate with anoxic brine, liberating H{sub 2} on an equimolar basis with Fe reacted. Presence of CO{sub 2} caused the initial reaction to proceed more rapidly, but CO{sub 2}-induced passivation stopped the reaction if the CO{sub 2} were present in sufficient quantities. Addition of H{sub 2}S to a CO{sub 2}-passivated system caused reversal of the passivation. Low-carbon steel immersed in brine with H{sub 2}S showed no reaction, apparently because of passivation of the steel by formation of FeS. Addition of CO{sub 2} to an H{sub 2}S-passivated system did not reverse the passivation. Cu- and Ti-base materials showed essentially no corrosion when exposed to brine and overpressures of N{sub 2}, CO{sub 2}, and H{sub 2}S except for the rapid and complete reaction between Cu-base materials and H{sub 2}S. The Al-base materials reacted at approximately the same rate as low-carbon steel when immersed in anoxic Brine A; considerably more rapidly in the presence of CO{sub 2} or H{sub 2}S; and much more rapidly when iron was present in the system as a brine contaminant. High-purity Al was much more susceptible to corrosion than the 6061 alloy. No significant reaction took place on any material in any environment in the vapor-phase exposures.

More Details

Optical waveguide tamper sensor technology

Carson, R.F.

Dielectric optical waveguides exhibit properties that are well suited to sensor applications. They have low refractive index and are transparent to a wide range of wavelengths. They can react with the surrounding environment in a variety of controllable ways. In certain sensor applications, it is advantageous to integrate the dielectric waveguide on a semiconductor substrate with active devices. In this work, we demonstrate a tamper sensor based on dielectric waveguides that connect epitaxial GaAs-GaAlAs sources and detectors. The tamper sensing function is realized by attaching particles of absorbing material with high refractive index to the surface of the waveguides. These absorbers are then attached to a lid or cover, as in an integrated circuit package or multi-chip module. The absorbers attenuate the light in the waveguides as a function of absorber interaction. In the tamper indicating mode, the absorbers are placed randomly on the waveguides, to form a unique attenuation pattern that is registered by the relative signal levels on the photodetectors. When the lid is moved, the pattern of absorbers changes, altering the photodetector signals. This dielectric waveguide arrangement is applicable to a variety of sensor functions, and specifically can be fabricated as a chemical sensor by the application of cladding layers that change their refractive index and/or optical absorption properties upon exposure to selected chemical species. An example is found in palladium claddings that are sensitive to hydrogen. A description of designs and a basic demonstration of the tamper sensing and chemical sensing functions is described herein.

More Details

Hazards and controls at the Sandia National Laboratories microelectronics development laboratory

Benton, M.A.

The Microelectronics Development Laboratory (MDL) contains 3,000 m{sup 2}, Which includes 1,000 m{sup 2}of Class I clean room space. There are 20 laminar flow Class I clean room bays. The MDL supplies several, full-flow process technologies which produce complementary metal oxide semiconductor (CMOS) integrated circuits using 150 nun diameter silicon wafers. All gases, chemicals and physical hazards used in the fabrication processes are controlled to levels well below regulatory requirements. Facility engineering controls in the MDL include toxic and pyrophoric gas monitoring, interlocks, ventilation, substitution and chemical segregation. Toxic and pyrophoric gases are monitored continuously inside processing tools as well as through the exhaust lines, gas cabinets, the valve boxes, and in general work areas. The toxic gas monitoring systems are interlocked to gas shutoff valves and have both low and high level alarms. In-use process gases are stored in exhausted cabinets. All chemicals and gases are segregated by chemical type. The processes are organized into eight sector areas that consist of photolithography, wet processes, dry etch, ion implant, metals, diffusion, chemical vapor deposition (CVD) and chemical mechanical polishing (CW). Each morning, engineering, safety and facilities personnel meet to review the equipment and wafer lot status and discuss processing issues. Hazards are assessed in the MDL with periodic walkthroughs, continuous toxic and pyrophoric gas monitoring and personal monitoring. All chemicals and gases proposed for use in the MDL are reviewed by the industrial hygienist and must be approved by a manager before they are purchased. All new equipment and processes are reviewed by a hazard and barrier committee and cannot be used in the MDL without the committee`s approval and an IH hazard assessment. Overall risk of operating the MDL has been reduced to a level that is as low as reasonable achievable for this research facility.

More Details

Metal sorption on kaolinite

Westrich, Henry R.

A key issue in performance assessment of low-level radioactive waste sites is predicting the transport and retardation of radionuclides through local soils under a variety of hydrologic and geochemical conditions. Improved transport codes should include a mechanistic model of radionuclide retardation. The authors have been investigating metal sorption (Cs{sup +}, Sr{sup 2+}, and Ba{sup 2+}) on a simple clay mineral (kaolinite) to better understand the geochemical interactions of common soil minerals with contaminated groundwaters. These studies include detailed characterizations of kaolinite surfaces, experimental adsorption measurements, surface complexation modeling, and theoretical simulations of cation sorption. The aluminol edge (010) site has been identified as the most likely site for metal sorption on kaolinite in natural solutions. Relative metal binding strengths decrease from Ba{sup 2+} to Sr{sup 2+} to Cs{sup +}, with some portion sorbed on both kaolinite edges and basal surfaces. Some Cs{sup +} also appears to be irreversibly sorbed on both sites. Molecular dynamics simulations suggest that Cs{sup +} is sorbed at aluminol (010) edge sites as an inner-sphere complex and weakly sorbed as an outer-sphere complex on (001) basal surfaces. These results provide the basis to understand and predict metal sorption onto kaolinite, and a framework to characterize sorption processes on more complex clay minerals.

More Details

Through bulkhead initiator studies

Begeal, D.R.

This report describes recent work done to demonstrate feasibility of a fail-safe Through Bulkhead Initiator with minimum dimensions and suitable for use in cyclical thermal environments. Much of the ground work for a fail-safe TBI was previously done by A.C. Schwartz. This study is an expansion of Schwartz`s work to evaluate devices with bulkheads of 304 stainless steel and Inconel 718; explosive donors of PETN, BNCP, and a 0.005 inch thick steel flying plate donor traveling at 2.6 mm/{micro}s; and explosive acceptors of PETN and BNCP. Bulkhead thickness were evaluated in the range of 0.040 to 0.180 inch. The explosive acceptors initiated a small HMX pellet to drive a 0.005 inch thick steel flying plate, and VISAR histories of the HMX-driven flying plates were the measure of acceptable performance. A companion set of samples used a PMMA acceptor to measure the particle velocities at the bulkhead/PMMA interface with VISAR. These data were used to compute the input pressure to the acceptor explosives in an attempt to measure initiation threshold. Unfortunately, the range of bulkhead thicknesses tested did not give any failures, thus the threshold was not determined. It was found that either explosive or the flying plate would perform as a TBI in the bulkhead thickness range tested. The optimum TBI is about 0.060 inches thick, and steel bulkheads seem to be more structurally sound than those made of Inconel. That is, cross section views of the Inconel bulkheads showed it to be more prone to stress cracking than was the 304 stainless steel. Both PETN and BNCP showed good performance when tested at {minus}65 F following thermal cycling of {minus}65 F to +165 F. Analysis of the TBI function times showed that BNCP acceptor explosives were undergoing the classical deflagration to detonation process. The PETN acceptors were undergoing prompt detonation.

More Details

Hand geometry field application data analysis

Ahrens, J.S.

Over the last fifteen years, Sandia National Laboratories Security Systems and Technology Center, Department 5800, has been involved in several laboratory tests of various biometric identification devices. These laboratory tests were conducted to verify the manufacturer`s performance claims, to determine strengths and weaknesses of particular devices, and to evaluate which devices meet the US Department of Energy`s unique needs for high-security devices. However, during a recent field installation of one of these devices, significantly different performance was observed than had been predicted by these laboratory tests. This report documents the data analysis performed in the search for an explanation of these differences.

More Details

Micromachined sensor systems on a chip: The integration of MEMS with CMOS and its applications

Smith, J.; Montague, S.; Sniegowski, J.

The monolithic integration of micromechanical devices with their controlling electronics offers potential increases in performance as well as decreased cost for these devices. Analog Devices has demonstrated the commercial viability of this integration by interleaving micromechanical fabrication steps with microelectronic fabrication steps to produce a single-axis accelerometer on a chip. A next-generation integrated technology developed at Sandia National Laboratories eliminates many of the constraints associated with Analog`s process. This new technology enables the manufacture of complex micromachined sensor systems on a chip. An overview of Sandia`s micromachined system-on-a-chip technology along with application of the technology to inertial sensor systems designed by researchers at U.C. Berkeley will be given.

More Details

Extending applicability of cluster based pattern recognition with efficient approximation techniques

Martinez, R.F.; Osbourn, G.C.

The fundamental goal of this research has been to improve computational efficiency of the Visually Empirical Region of Influence (VERI) based clustering and pattern recognition (PR) algorithms we developed in previous work. The original clustering algorithm, when applied to data sets with N points, ran in time proportional to N{sup 3} (denoted with the notation O (N{sup 3})), which limited the size of data sets it could find solutions for. Results generated from our original clustering algorithm were superior to commercial clustering packages. These results warranted our efforts to improve the runtimes of our algorithms. This report describes the new algorithms, advances and obstacles met in their development. The report gives qualitative and quantitative analysis of the improved algorithms performances. With the information in this report, an interested user can determine which algorithm is best for a given problem in clustering (2-D) or PR (K-D), and can estimate how long it will run using the runtime plots of the algorithms before using any software.

More Details

Cooperative monitoring and its role in regional security

Biringer, Kent L.

Cooperative monitoring systems can play an important part in promoting the implementation of regional cooperative security agreements. These agreements advance the national security interests of the United States in a post Cold War environment. Regional issues as widely varying as nuclear nonproliferation, trade and environmental pollution can be the source of tensions which may escalate to armed conflict which could have global implications. The Office of National Security Policy Analysis at the US Department of Energy (DOE) has an interest in seeking ways to promote regional cooperation that can reduce the threats posed by regional conflict. DOE technologies and technical expertise can contribute to developing solutions to a wide variety of these international problems. Much of this DOE expertise has been developed in support of the US nuclear weapons and arms control missions. It is now being made available to other agencies and foreign governments in their search for regional security and cooperation. This report presents two examples of interest to DOE in which monitoring technologies could be employed to promote cooperation through experimentation. The two scenarios include nuclear transparency in Northeast Asia and environmental restoration in the Black Sea. Both offer the potential for the use of technology to promote regional cooperation. The issues associated with both of these monitoring applications are presented along with examples of appropriate monitoring technologies, potential experiments and potential DOE contributions to the scenarios.

More Details

Fusion of radar data to extract 3-dimensional objects LDRD final report

Fellerhoff, R.; Hensley, B.; Carande, R.; Burkhart, G.; Ledner, R.

Interferometric Synthetic Aperture Radar (IFSAR) is a very promising technology for remote mapping of 3-Dimensional objects. In particular, 3-D maps of urban areas are extremely important to a wide variety of users, both civilian and military. However, 3-D maps produced by traditional optical stereo (stereogrammetry) techniques can be quite expensive to obtain, and accurate urban maps can only be obtained with a large amount of human-intensive interpretation work. IFSAR has evolved over the last decade as a mapping technology that promises to eliminate much of the human-intensive work in producing elevation maps. However, IFSAR systems have only been robustly demonstrated in non-urban areas, and have not traditionally been able to produce data with enough detail to be of general use in urban areas. Sandia Laboratories Twin Otter IFSAR was the first mapping radar system with the proper parameter set to provide sufficiently detailed information in a large number of urban areas. The goal of this LDRD was to fuse previously unused information derived from IFSAR data in urban areas that can be used to extract accurate digital elevation models (DEMs) over wide areas without intensive human interaction.

More Details

High accuracy integrated global positioning system/inertial navigation system LDRD: Final report

Owen, Todd E.

This report contains the results of a Sandia National Laboratories Directed Research and Development (LDRD) program to investigate the integration of Global Positioning System (GPS) and inertial navigation system (INS) technologies toward the goal of optimizing the navigational accuracy of the combined GPSANS system. The approach undertaken is to integrate the data from an INS, which has long term drifts, but excellent short term accuracy, with GPS carrier phase signal information, which is accurate to the sub-centimeter level, but requires continuous tracking of the GPS signals. The goal is to maintain a sub-meter accurate navigation solution while the vehicle is in motion by using the GPS measurements to estimate the INS navigation errors and then using the refined INS data to aid the GPS carrier phase cycle slip detection and correction and bridge dropouts in the GPS data. The work was expanded to look at GPS-based attitude determination, using multiple GPS receivers and antennas on a single platform, as a possible navigation aid. Efforts included not only the development of data processing algorithms and software, but also the collection and analysis of GPS and INS flight data aboard a Twin Otter aircraft. Finally, the application of improved navigation system accuracy to synthetic aperture radar (SAR) target location is examined.

More Details

Microbial gas generation under expected Waste Isolation Pilot Plant repository conditions

Francis, A.J.; Gillow, J.B.; Giles, M.R.

Gas generation from the microbial degradation of the organic constituents of transuranic waste under conditions expected at the Waste Isolation Pilot Plant (WIPP) repository was investigated at Brookhaven National Laboratory. The biodegradation of mixed cellulosics (various types of paper) and electron-beam irradiated plastic and rubber materials (polyethylene, polyvinylchloride, neoprene, hypalon, and leaded hypalon) was examined. The rate of gas production from cellulose biodegradation in inundated samples incubated for 1,228 days at 30 C was biphasic, with an initial rapid rate up to approximately 600 days incubation, followed by a slower rate. The rate of total gas production in anaerobic samples containing mixed inoculum was as follows: 0.002 mL/g cellulose/day without nutrients; 0.004 mL/g cellulose/day with nutrients; and 0.01 mL/g cellulose/day in the presence of excess nitrate. Carbon dioxide production proceeded at a rate of 0.009 {micro}mol/g cellulose/day in anaerobic samples without nutrients, 0.05 {micro}mol/g cellulose/day in the presence of nutrients, and 0.2 {micro}mol/g cellulose/day with excess nitrate. Adding nutrients and excess nitrate stimulated denitrification, as evidenced by the accumulation of N{sub 2}O in the headspace (200 {micro}mol/g cellulose). The addition of the potential backfill bentonite increased the rate of CO{sub 2} production to 0.3 {micro}mol/g cellulose/day in anaerobic samples with excess nitrate. Analysis of the solution showed that lactic, acetic, propionic, butyric, and valeric acids were produced due to cellulose degradation. Samples incubated under anaerobic humid conditions for 415 days produced CO{sub 2} at a rate of 0.2 {micro}mol/g cellulose/day in the absence of nutrients, and 1 {micro}mol/g cellulose/day in the presence of bentonite and nutrients. There was no evidence of biodegradation of electron-beam irradiated plastic and rubber.

More Details

Dish/Stirling for Department of Defense applications final report

Diver, R.B.; Menicucci, D.F.

This report describes a Strategic Environmental Research and Development Program (SERDP) project to field a dish/Stirling system at a southwestern US military facility. This project entitled ``Dish/Stirling for DoD Applications`` was started in August 1993 and was completed in September 1996. The project`s objective was to assist military facilities to field and evaluate emerging environmentally sound and potentially economical dish/Stirling technology. Dish/Stirling technology has the potential to produce electricity at competitive costs while at the same time providing a secure and environmentally benign source of power. In accordance with the SERDP charter, this project leveraged a US Department of Energy (DOE) cost-shared project between Sandia National Laboratories and Cummins Power Generation, Inc. (CPG). CPG is a wholly owned subsidiary of Cummins Engine Company, a leading manufacturer of diesel engines. To accomplish this objective, the project called for the installation of a dish/Stirling system at a military facility to establish first-hand experience in the operation of a dish/Stirling system. To scope the potential DoD market for dish/Stirling technology and to identify the site for the demonstration, a survey of southwestern US military facilities was also conducted. This report describes the project history, the Cummins dish/Stirling system, results from the military market survey, and the field test results.

More Details

Production Risk Evaluation Program (PREP) - summary

Kjeldgaard, E.A.; Saloio, J.H.; Vannoni, M.G.

Nuclear weapons have been produced in the US since the early 1950s by a network of contractor-operated Department of Energy (DOE) facilities collectively known as the Nuclear Weapon Complex (NWC). Recognizing that the failure of an essential process might stop weapon production for a substantial period of time, the DOE Albuquerque Operations office initiated the Production Risk Evaluation Program (PREP) at Sandia National Laboratories (SNL) to assess quantitatively the potential for serious disruptions in the NWC weapon production process. PREP was conducted from 1984-89. This document is an unclassified summary of the effort.

More Details

Properties of 30 lb/ft{sup 3} rigid polyurethane foams

G, Wenski E.; Stinebaugh, R.E.; York II, A.R.

This report summarizes tests on five different foams. Two are manufactured at Allied Signal, two at North Carolina Foam Industries, and one at General Plastics. The tests conducted are: thermal conductivity at various temperatures, specific heat at 60{degrees}C, compressive strength at ambient and 60{degrees}C, thermogravimetric analysis to 800{degrees}C, intumescence, and char formation properties. A CHN analysis was also performed. Funding for the testing of rigid polyurethane foams originated from the AT-400A container program at Sandia National Laboratories. This testing supported the development of the AT-400A container. The AT-400A is a storage and transportation container that will be used initially at the Pantex Plant for storage of plutonium from dismantled nuclear weapons.

More Details

Automated detection and reporting of Volatile Organic Compounds (VOCs) in complex environments

Hargis Jr., P.J.; Preppernau, B.L.; Osbourn, G.C.

This paper describes results from efforts to develop VOC sensing systems based on two complementary techniques. The first technique used a gated channeltron detector for resonant laser-induced multiphoton photoionization detection of trace organic vapors in a supersonic molecular beam. The channeltron was gated using a relatively simple circuit to generate a negative gate pulse with a width of 400 ns (FWHM), a 50 ns turn-on (rise) time, a 1.5 {mu}s turn-off (decay) time, a pulse amplitude of {minus}1000 Volts, and a DC offset adjustable from zero to {minus}1500 Volts. The gated channeltron allows rejection of spurious responses to UV laser light scattered directly into the channeltron and time-delayed ionization signals induced by photoionization of residual gas in the vacuum chamber. Detection limits in the part-per-trillion range have been demonstrated with the gated detector. The second technique used arrays of surface acoustic wave (SAW) devices coated with various chemically selective materials (e.g., polymers, self assembled monolayers) to provide unique response patterns to various chemical analytes. This work focused on polymers, formed by spin casting from solution or by plasma polymerization, as well as on self assembled monolayers. Response from coated SAWs to various concentrations of water, volatile organics, and organophosphonates (chemical warfare agent simulants) were used to provide calibration data. A novel visual empirical region of influence (VIERI) pattern recognition technique was used to evaluate the ability to use these response patterns to correctly identify chemical species. This investigation shows how the VERI technique can be used to determine the best set of coatings for an array, to predict the performance of the array even if sensor responses change due to aging of the coating materials, and to identify unknown analytes based on previous calibration data.

More Details

Parallel paving: An algorithm for generating distributed, adaptive, all-quadrilateral meshes on parallel computers

Lober, R.R.; Tautges, T.J.; Vaughan, C.T.

Paving is an automated mesh generation algorithm which produces all-quadrilateral elements. It can additionally generate these elements in varying sizes such that the resulting mesh adapts to a function distribution, such as an error function. While powerful, conventional paving is a very serial algorithm in its operation. Parallel paving is the extension of serial paving into parallel environments to perform the same meshing functions as conventional paving only on distributed, discretized models. This extension allows large, adaptive, parallel finite element simulations to take advantage of paving`s meshing capabilities for h-remap remeshing. A significantly modified version of the CUBIT mesh generation code has been developed to host the parallel paving algorithm and demonstrate its capabilities on both two dimensional and three dimensional surface geometries and compare the resulting parallel produced meshes to conventionally paved meshes for mesh quality and algorithm performance. Sandia`s {open_quotes}tiling{close_quotes} dynamic load balancing code has also been extended to work with the paving algorithm to retain parallel efficiency as subdomains undergo iterative mesh refinement.

More Details

Circuit bridging of digital equipment caused by smoke from a cable fire

Martin, Tina T.

Advanced reactor systems are likely to use protection systems with digital electronics that ideally should be resistant to environmental hazards, including smoke from possible cable fires. Previous smoke tests have shown that digital safety systems can fail even at relatively low levels of smoke density and that short-term failures are likely to be caused by circuit bridging. Experiments were performed to examine these failures, with a focus on component packaging and protection schemes. Circuit bridging, which causes increased leakage currents and arcs, was gauged by measuring leakage currents among the leads of component packages. The resistance among circuit leads typically varies over a wide range, depending on the nature of the circuitry between the pins, bias conditions, circuit board material, etc. Resistance between leads can be as low as 20 k{Omega} and still be good, depending on the component. For these tests, the authors chose a printed circuit board and components that normally have an interlead resistance above 10{sup 12} {Omega}, but if the circuit is exposed to smoke, circuit bridging causes the resistance to fall below 10{sup 3} {Omega}. Plated-through-hole (PTH) and surface-mounted (SMT) packages were exposed to a series of different smoke environments using a mixture of environmentally qualified cables for fuel. Conformal coatings and enclosures were tested as circuit protection methods. High fuel levels, high humidity, and high flaming burns were the conditions most likely to cause circuit bridging. The inexpensive conformal coating that was tested - an acrylic spray - reduced leakage currents, but enclosure in a chassis with a fan did not. PTH packages were more resistant to smoke-induced circuit bridging than SMT packages. Active components failed most often in tests where the leakage currents were high, but failure did not always accompany high leakage currents.

More Details

The effects of infiltration on the thermo-hydrologic behavior of the potential repository at Yucca Mountain

Ho, Clifford K.

The thermo-hydrologic behavior of the potential repository at Yucca Mountain, Nevada, has been simulated to investigate the effects of infiltration. Transient temperatures, liquid saturations, and liquid mass flow rates through the fractures and matrix were simulated using several different steady infiltration rates ranging from 0.3 to 30 min./year. The lower infiltration rates resulted in higher temperatures near the repository element, but the overall transient temperature profiles were similar. The hydrologic response near the repository (liquid saturations and fluxes) was found to be very sensitive to the infiltration rate. Increased infiltration rates reduced the time to re-wet the simulated repository during cooling, and an infiltration rate of 10 mm/year was sufficient to completely eliminate the dry-out zone around the repository.

More Details

Condensed summary of the systems prioritization method as a decision-aiding approach for the Waste Isolation Pilot Plant

Boak, D.M.; Prindle, N.H.; Lincoln, R.

In March 1994, the US Department of Energy Carlsbad Area Office (DOE/CAO) implemented a performance based decision-aiding method to assist in programmatic prioritization within the Waste Isolation Pilot Plant (WIPP) project. The prioritization was with respect to 40 CFR Part 191.13(a) and 40 CFR part 268.6. U.S. Environmental Protection Agency (EPA) requirements for long-term isolation of radioactive and hazardous wastes. The Systems Prioritization Method (SPM), was designed by Sandia National Laboratories to: (1) identify programmatic options (activities), their costs and durations; (2) analyze combinations of activities in terms of their predicted contribution to long-term performance of the WIPP disposal system; and (3) analyze cost, duration, and performance tradeoffs. SPM results were the basis for activities recommended to DOE/CAO in May 1995. SPM identified eight activities (less than 15% of the 58 proposed for consideration) predicted to be essential in addressing key regulatory issues. The SPM method proved useful for risk or performance-based prioritization in which options are interdependent and system behavior is nonlinear. 10 refs., 2 figs., 1 tab.

More Details

Experimental determination of the shipboard fire environment for simulated radioactive material packages

Koski, Jorman A.

A series of eight fire tests with simulated radioactive material shipping containers aboard the test ship Mayo Lykes, a break-bulk freighter, is described. The tests simulate three basic types of fires: engine room fires, cargo fires and open pool fires. Detailed results from the tests include temperatures, heat fluxes and air flows measured during the fires. The first examination of the results indicates that shipboard fires are not significantly different from fires encountered in land transport. 13 refs., 15 figs., 11 tabs.

More Details

Evaluation of a downhole tiltmeter array for monitoring hydraulic fractures

Warpinski, Norman R.

A series of hydraulic-fracture experiments using a downhole tiltmeter array, called an inclinometer array, was conducted at the Department of Energy (DOE)/Gas Research Institute (GRI) Multi-Site facility in Colorado. The inclinometer array was used to measure the deformation of the reservoir rock in response to hydraulic fracture opening and confirm microseismically measured results. In addition, the inclinometer array was found to be a useful tool for accurately measuring closure stress, measuring residual widths of both propped and unpropped fractures, estimating proppant distribution, and evaluating values of in situ moduli.

More Details

Reliability-based covariance control design

Field Jr., R.V.; Bergman, L.A.

An extension to classical covariance control methods, introduced by Skelton and co-workers, is proposed specifically for application to the control of civil engineering structures subjected to random dynamic excitations. The covariance structure of the system is developed directly from specification of its reliability via the assumption of independent (Poisson) outcrossings of its stationary response process from a polyhedral safe region. This leads to a set of state covariance controllers, each of which guarantees that the closed-loop system will possess the specified level of reliability. An example civil engineering structure is considered.

More Details

Structure-property relationships in silica-siloxane nanocomposite materials

Ulibarri, Tamara A.

The simultaneous formation of a filler phase and a polymer matrix via in situ sol-gel techniques provides silica-siloxane nanocomposite materials of high strength. This study concentrates on the effects of temperature and relative humidity on a trimodal polymer system in an attempt to accelerate the reaction as well as evaluate subtle process- structure-property relations. It was found that successful process acceleration is only viable for high humidity systems when using the tin(IV) catalyst dibutyltin dilaurate. Processes involving low humidity were found to be very temperature and time dependent. Bimodal systems were investigated and demonstrated that the presence of a short-chain component led to enhanced material strength. This part of the study also revealed a link between the particle size and population density and the optimization of material properties.

More Details

Windows NT 4.0 Asynchronous Transfer Mode network interface card performance

Tolendino, Lawrence F.

Windows NT desktop and server systems are becoming increasingly important to Sandia. These systems are capable of network performance considerably in excess of the 10 Mbps Ethernet data rate. As alternatives to conventional Ethernet, 155 Mbps Asynchronous Transfer Mode, ATM, and 100 Mbps Ethernet network interface cards were tested and compared to conventional 10 Mbps Ethernet cards in a typical Windows NT system. The results of the tests were analyzed and compared to show the advantages of the alternative technologies. Both 155 Mbps ATM and 100 Mbps Ethernet offer significant performance improvements over conventional 10 Mbps shared media Ethernet.

More Details

DiMES divertor erosion experiments on DIII-D

Journal of Nuclear Materials

Wampler, William R.

Thin metal films (∼ 100 nm thick) of Be, W, V and Mo, were deposited on a Si depth-marked graphite sample and exposed to the steady-state outer strike point on DIII-D in order to measure their respective erosion rates. Gross erosion rates and redeposition lengths are found to decrease with the atomic number of the metallic species, as expected. The maximum net erosion rate for carbon, which occurs near the separatrix, increased from 4 to 16 nm/s when the incident heat flux was increased from 0.7 to 2 MW/m2. Comparisons of the measured carbon erosion with REDEP code calculations show good agreement for both the absolute net erosion rate and its spatial variation. Visible spectroscopic measurements of singly ionized Be (BeII 4674 Å) have determined that the erosion process reaches steady-state during the exposure.

More Details

Characterization of energetic deuterium striking the divertor of the DIII-D tokamak

Journal of Nuclear Materials

Wampler, William R.

Measurements of the deuterium particle flux and energy to the divertor of the DIII-D tokamak during a series of plasmas that terminated in disruptions have been made using a silicon collector probe installed on the DiMES (divertor materials exposure system) mechanism. During the steady state portion of each discharge, the probe was located in the private flux region, but immediately before disrupting the plasma, by injecting either Ar or D2 gas, the strike point of the outer divertor leg was positioned over the probe. Comparison of the amount of retained D in the probe for the two types of disruptions indicates that much of the trapped D could have resulted from exposure in the private flux zone prior to the disruption. Measurements of the depth distribution of the trapped D in the Si imply that the incident ion energy was approximately 100 eV at normal incidence and decreased slightly at oblique angles. The measurements give an upper bound to the energy of deuterons striking the divertor floor in the vicinity of the strikepoint during disruptions.

More Details

3D seismic imaging on massively parallel computers

Womble, David E.

The ability to image complex geologies such as salt domes in the Gulf of Mexico and thrusts in mountainous regions is a key to reducing the risk and cost associated with oil and gas exploration. Imaging these structures, however, is computationally expensive. Datasets can be terabytes in size, and the processing time required for the multiple iterations needed to produce a velocity model can take months, even with the massively parallel computers available today. Some algorithms, such as 3D, finite-difference, prestack, depth migration remain beyond the capacity of production seismic processing. Massively parallel processors (MPPs) and algorithms research are the tools that will enable this project to provide new seismic processing capabilities to the oil and gas industry. The goals of this work are to (1) develop finite-difference algorithms for 3D, prestack, depth migration; (2) develop efficient computational approaches for seismic imaging and for processing terabyte datasets on massively parallel computers; and (3) develop a modular, portable, seismic imaging code.

More Details

Proposed baseline text for UNI 4.0 security addendum

Tarman, Thomas D.

This document specifies signaling procedures required to support security services in the Phase I ATM Security Specification. These signaling procedures are in addition to those described in UNI 4.0 Signaling. When establishing point-to-point and point-to-multipoint calls, the call control procedures described in the ATM Forum UNI 4.0 Signaling apply. This document describes the additional information elements and procedures necessary to support security services. This description is in an incremental form with differences from the point-to-point and point-to-multipoint calls with respect to messages, information elements, and signaling procedures.

More Details

Investigation of defects in highly photosensitive germanosilicate thin films

Simmons-Potter, Kelly

Germanosilicate glasses exhibit a significant photosensitive response which has been linked to the presence of oxygen-deficient germanium point defects in the glass structure. Based on this correlation, highly photosensitive thin films have been engineered which demonstrate the largest reported ultraviolet-induced refractive index perturbations (An) in an as-synthesized material. Our thin-film fabrication process avoids the use of hydrogen sensitizing treatments and, thus, yields stable films which retain their predisposition for large photosensitivity for over one year of storage. Understanding the nature of the defects in such films and their relationship to charge trapping and enhanced photosensitivity is of paramount importance in designing and optimizing the materials. Toward this end, our films have been studied using electron paramagnetic resonance (EPR), capacitance-voltage, and optical bleaching and absorption spectroscopies. We find experimental evidence suggesting a model in which a change in spin state and charge state of isolated paramagnetic neutral Ge dangling bonds form either diamagnetic positively or negatively charged Ge sites which are largely responsible for the charge trapping and photosensitivity in these thin films. We present experimental data and theoretical modeling to support our defect model and to show the relevance of the work.

More Details

Structural defect control and photosensitivity in reactively sputtered germanosilicate glass films

Potter Jr., B.G.; Simmons-Potter, K.; Warren, W.L.; Ruffner, J.A.

The optical performance of refractive index structures induced in photosensitive (PS) glasses ultimately depends on the index modulation depth attainable. In germanosilicate materials, the photosensitive response is linked to the presence of oxygen-deficient germanium point defect centers. Prior efforts to increase PS in these materials, e.g., hydrogen loading, rely on a chemical reduction of the glass structure to enhance the population of oxygen deficient centers and thus increase the saturated refractive index change. We have previously reported the development of highly photosensitive, as-deposited germanosilicate glass films through reactive atmosphere (O{sub 2}/Ar) sputtering from a Ge/Si alloy target. The present work details our investigation of the effect of substrate temperature during deposition on the material structure and propensity for photosensitivity. Using optical absorption/bleaching, Raman, electron paramagnetic resonance (EPR) and selective charge injection techniques we show that the predominate defect states responsible for the PS response can be varied through substrate temperature control. We find that two regimes of photosensitive behavior can be accessed which exhibit dramatically different uv-bleaching characteristics. Thus, the corresponding dispersion of the refractive index change as well as its magnitude can be controlled using our synthesis technique. Tentative defect models for the photosensitive process in materials deposited at both ambient temperature and at elevated substrate temperatures will be presented.

More Details

Modular photonic power and VCSEL-based data links for aerospace and military applications

Carson, R.F.

More Details

The effects of heterogeneities on the performance of capillary barriers for waste isolation

Ho, Clifford K.

The effects of heterogeneities on the performance of capillary barriers is investigated by simulating three systems comprised of a fine soil layer overlying a coarse gravel layer with homogeneous, layered heterogeneous, and random heterogeneous property fields. The amount of lateral diversion above the coarse layer under steady-state infiltration conditions is compared between the simulations. Results indicate that the performance of capillary barriers may be significantly influenced by the spatial variability of the properties. The layered heterogeneous system performed best as a result of horizontal features within the fine layer that acted as additional local capillary barriers that delayed breakthrough into the coarse layer. The random heterogeneous system performed worst because of channeled flow that produced localized regions of water breakthrough into the coarse layer. These results indicate that engineered capillary barriers may be improved through emplacement and packing methods that induce a layered system similar to the layered heterogeneous field simulated in this study.

More Details
Results 94101–94150 of 99,299
Results 94101–94150 of 99,299