Publications

Results 94151–94200 of 99,299

Search results

Jump to search filters

Principles and objectives of containment verification and performance monitoring and technology selection

Betsill, Jeffrey D.

While a number of technologies or methods of subsurface imaging and monitoring exist, most require some adaptation to meet the site-specific objectives of a particular in-situ waste containment/stabilization verification and monitoring program. The selection of methods and their site-specific adaptation must be based on sound, scientific principles. Given this, specific information about the site and the objectives of the containment or remediation are required to design and implement an appropriate and effective verification and monitoring program. Site and technology information that must be considered and how it affects the selection and adaptation of monitoring technologies is presented. In general, this information includes the objectives of the containment or remediation, the verification and monitoring systems, and the physical properties of the site and the waste containment/stabilization system. The objectives of the containment or remediation and the verification and monitoring system must be defined to provide a goal for the technology developer`s design. The physical properties of the site and the waste containment/stabilization system are required to ensure the proper technology is selected. A conceptual framework and examples are given to demonstrate the impacts of these aspects on technology selection.

More Details

A simple arc column model that accounts for the relationship between voltage, current and electrode gap during VAR

Williamson, Rodney L.

Mean arc voltage is a process parameter commonly used in vacuum arc remelting (VAR) control schemes. The response of this parameter to changes in melting current (I) and electrode gap (g{sub e}) at constant pressure may be accurately described by an equation of the form V = V{sub 0} + c{sub 1}g{sub e}I + c{sub 2}g{sub e}{sup 2} + c{sub 3}I{sup 2}, where c{sub 1}, c{sub 2} and c{sub 3} are constants, and where the non-linear terms generally constitute a relatively small correction. If the non-linear terms are ignored, the equation has the form of Ohm`s law with a constant offset (V{sub 0}), c{sub 1}g{sub e} playing the role of resistance. This implies that the arc column may be treated approximately as a simple resistor during constant current VAR, the resistance changing linearly with g{sub e}. The VAR furnace arc is known to originate from multiple cathode spot clusters situated randomly on the electrode tip surface. Each cluster marks a point of exist for conduction electrons leaving the cathode surface and entering the electrode gap. Because the spot clusters re highly localized on the cathode surface, each gives rise to an arc column that may be considered to operate independently of other local arc columns. This approximation is used to develop a model that accounts for the observed arc voltage dependence on electrode gap at constant current. Local arc column resistivity is estimated from elementary plasma physics and used to test the model for consistency by using it to predict local column heavy particle density. Furthermore, it is shown that the local arc column resistance increases as particle density increases. This is used to account for the common observation that the arc stiffens with increasing current, i.e. the arc voltage becomes more sensitive to changes in electrode gap as the melting current is increased. This explains why arc voltage is an accurate electrode gap indicator for high current VAR processes but not low current VAR processes.

More Details

Anisotropic porous metals production by melt processing

Baldwin, Michael D.

The collapse of the Soviet Union has left many of its scientific institutes and technical universities without their traditional backbone of financial support. In an effort to stem the export of science to nations advocating nuclear proliferation, and to acquire potentially useful technology, several US government-sponsored programs have arise to mine the best of former USSR scientific advances. In the field of metallurgy, the earliest institutes to be investigated by Sandia National Laboratories are located in Ukraine. In particular, scientists at the State Metallurgical Academy have developed unique porous metals, resembling what could be described as gas-solid ``eutectic``. While porous metals are available in the US and other western countries, none have the remarkable structure and properties of these materials. Sandia began a collaborative program with the Ukrainian scientists to bring this technology to the US, verify the claims regarding these materials, and begin production of the so-called Gasars. This paper will describe the casting process technology and metallurgy associated with the production of Gasars, and will review the progress of the collaborative project.

More Details

Electron induced depassivation of H and D terminated Si/SiO{sub 2} interfaces

Warren, William L.

The authors have performed electron spin resonance and electrical measurements on SiO{sub 2}/Si structures subjected to anneals in 5% H{sub 2}/N{sub 2} or 5% D{sub 2}/N{sub 2} gases and subsequently injected with electrons using corona ions and ultra-violet radiation. Threshold voltage and transconductance measurements have also been made on 0.25 {micro}m metal-oxide-semiconductor transistors subjected to 400 C anneals in the same gases and subsequently aged by hot electron injection. The electrical data on SiO{sub 2}/Si structures indicates that the density of interface states increases as a result of electron injection but that there are only minor differences between H and D passivated interfaces. The data on P{sub b}, trivalent Si dangling bond, centers at the same interfaces observed by electron spin resonance is insufficiently accurate to enable them to observe any significant differences. The hot electron injection experiments on transistors, consistent with other authors, indicate that, for the limited number of measurements they have made, the transistor aging resulting from the generation of interface states is significantly reduced for devices annealed in the D containing gas as compared to those annealed in the H containing gas. The origins of some potential differences in annealing behavior between the SiO{sub 2}/Si structures and the 0.25 {micro}m transistors are suggested.

More Details

Uncertainty of silicon 1-MeV damage function

Griffin, Patrick J.

The electronics radiation hardness-testing community uses the ASTM E722-93 Standard Practice to define the energy dependence of the nonionizing neutron damage to silicon semiconductors. This neutron displacement damage response function is defined to be equal to the silicon displacement kerma as calculated from the ORNL Si cross-section evaluation. Experimental work has shown that observed damage ratios at various test facilities agree with the defined response function to within 5%. Here, a covariance matrix for the silicon 1-MeV neutron displacement damage function is developed. This uncertainty data will support the electronic radiation hardness-testing community and will permit silicon displacement damage sensors to be used in least squares spectrum adjustment codes.

More Details

ESR melting under constant voltage conditions

Schlienger, M.E.

Typical industrial ESR melting practice includes operation at a constant current. This constant current operation is achieved through the use of a power supply whose output provides this constant current characteristic. Analysis of this melting mode indicates that the ESR process under conditions of constant current is inherently unstable. Analysis also indicates that ESR melting under the condition of a constant applied voltage yields a process which is inherently stable. This paper reviews the process stability arguments for both constant current and constant voltage operation. Explanations are given as to why there is a difference between the two modes of operation. Finally, constant voltage process considerations such as melt rate control, response to electrode anomalies and impact on solidification will be discussed.

More Details

Optimal beam pattern to maximize inclusion residence time in an electron beam melting hearth

Van Den Avyle, James A.

Approximate probabilities of inclusion survival through an electron beam melting hearth are computed from nitride dissolution rates, flotation velocities, and residence times. Dissolution rates were determined by measuring shrinkage rates of pure TiN and nitrided sponge in small pools of molten titanium in an electron beam melting hearth. Flotation velocities were calculated using correlations for fluid flow around spheres, and show that particles sink or float unless their densities are extremely close to that of molten titanium. Flow field characteristics which lead to effective inclusion removal are discussed in terms of heat flux pattern required to produce them, based on the electron beam`s unique ability to impart a nearly arbitrary heat flux pattern to the melt surface.

More Details

Comparison of calculated and experimental dosimetry activities for benchmark neutron fields

Griffin, Patrick J.

New dosimetry cross-section evaluations have been made available to the reactor community. Most dosimetry-quality evaluations include a section (File 33) that defines the uncertainty and covariance matrix for the dosimetry reaction cross section. This paper compares the latest computed cross-section activities for benchmark neutron fields with experimental data. Uncertainty data is usually reported with experimental measurements. This work also presents uncertainty data for the calculated activities. The calculated uncertainty values include a full uncertainty propagation using the cross-section evaluation, energy-dependent covariance data as well as the uncertainty attributed to the knowledge of the neutron spectrum.

More Details

Use of coupled passivants and consolidants on calcite mineral surfaces

Nagy, K.L.

Deterioration of monuments, buildings, and works of art constructed of carbonate-based stone potentially can be arrested by applying a combination of chemical passivants and consolidants that prevent hydrolytic attack and mechanical weakening. The authors used molecular modeling and laboratory synthesis to develop an improved passivating agent for the calcite mineral surface based on binding strength and molecular packing density. The effectiveness of the passivating agent with and without a linked outer layer of consolidant against chemical weathering was determined through leaching tests conducted with a pH-stat apparatus at pH 5 and 25 C. For the range of molecules considered, modeling results indicate that the strongest-binding passivant is the trimethoxy dianionic form of silylalkylaminocarboxylate (SAAC). The same form of silylalkylphosphonate (SAP) is the second strongest binder and the trisilanol neutral form of aminoethylaminopropylsilane (AEAPS) is ranked third. Short-term leaching tests on calcite powders coated with the trisilanol derivative of SAAC, the triethoxy neutral form of SAP, and the trimethoxy neutral form of AEAPS show that the passivant alone does not significantly slow the dissolution rate. However, all passivants when linked to the sol consolidant result in decreased rates. Combined AEAPS plus consolidant results in a coating that performs better than the commercial product Conservare{reg_sign} OH and at least as well as Conservare{reg_sign} H. The modeling results indicate that there may be a threshold binding energy for the passivant above which the dissolution rate of calcite is actually enhanced. More strongly-binding passivants may aid in the dissolution mechanism or dissociate in aqueous solution exposing the calcite surface to water.

More Details

Microelectronics plastic molded packaging

Palmer, David W.

The use of commercial off-the-shelf (COTS) microelectronics for nuclear weapon applications will soon be reality rather than hearsay. The use of COTS for new technologies for uniquely military applications is being driven by the so-called Perry Initiative that requires the U.S. Department of Defense (DoD) to accept and utilize commercial standards for procurement of military systems. Based on this philosophy, coupled with several practical considerations, new weapons systems as well as future upgrades will contain plastic encapsulated microelectronics. However, a conservative Department of Energy (DOE) approach requires lifetime predictive models. Thus, the focus of the current project is on accelerated testing to advance current aging models as well as on the development of the methodology to be used during WR qualification of plastic encapsulated microelectronics. An additional focal point involves achieving awareness of commercial capabilities, materials, and processes. One of the major outcomes of the project has been the definition of proper techniques for handling and evaluation of modern surface mount parts which might be used in future systems. This program is also raising the familiarity level of plastic within the weapons complex, allowing subsystem design rules accommodating COTS to evolve. A two year program plan is presented along with test results and commercial interactions during this first year.

More Details

A road map for implementing systems engineering

Dean, F.F.

Studies by academia, industry, and government indicate that applying a sound systems engineering process to development programs is an important tool for preventing cost and schedule overruns and performance deficiencies. There is an enormous body of systems engineering knowledge. Where does one start? How can the principles of systems engineering be applied in the Sandia environment? This road map is intended to be an aid to answering these questions.

More Details

Description of a solder pulse generator for the single step formation of ball grid arrays

Schmale, David T.

The traditional geometry for surface mount devices is the peripheral array where the leads are on the edges of the device. As the technology drives towards high input/output (I/O) count (increasing number of leads) and smaller packages with finer pitch (less distance between peripheral leads), limitations on peripheral surface mount devices arise. The leads on these fine pitch devices are fragile and can be easily bent. It becomes increasingly difficult to deliver solder past to leads spaced as little as 0.012 inch apart. Too much solder mass can result in bridging between leads while too little solder can contribute to the loss of mechanical and electrical continuity. A solution is to shift the leads from the periphery of the device to the area under the device. This scheme is called areal array packaging and is exemplified by the ball grid array (BGA) package. A system has been designed and constructed to deposit an entire array of several hundred uniform solder droplets onto a printed circuit board in a fraction of a second. The solder droplets wet to the interconnect lands on a pc board and forms a basis for later application of a BGA device. The system consists of a piezoelectric solder pulse unit, heater controls, an inert gas chamber and an analog power supply/pulse unit.

More Details

Laboratory directed research and development final report: Intelligent tools for on-machine acceptance of precision machined components

Christensen, N.G.

On-Machine Acceptance (OMA) is an agile manufacturing concept being developed for machine tools at SNL. The concept behind OMA is the integration of product design, fabrication, and qualification processes by using the machining center as a fabrication and inspection tool. This report documents the final results of a Laboratory Directed Research and Development effort to qualify OMA.

More Details

Final report on LDRD Project: In situ determination of composition and strain during MBE

Chason, E.

Molecular Beam Epitaxy (MBE) of semiconductor heterostructures for advanced electronic and opto-electronic devices requires precise control of the surface composition and strain. The development of advanced in situ diagnostics for real-time monitoring and process control of strain and composition would enhance the yield, reliability and process flexibility of material grown by MBE and benefit leading-edge programs in microelectronics and photonics. The authors have developed a real-time laser-based technique to measure the evolution of stress in epitaxial films during growth by monitoring the change in the wafer curvature. Research has focused on the evolution of stress during the epitaxial growth of Si{sub x}Ge{sub 1{minus}x} alloys on Si(001) substrates. Initial studies have observed the onset and kinetics of strain relaxation during the growth of heteroepitaxial layers. The technique has also been used to measure the segregation of Ge to the surface during alloy growth with monolayer sensitivity, an order of magnitude better resolution than post-growth characterization. In addition, creation of a 2-dimensional array of parallel beams allows rapid surface profiling of the film stress that can be used to monitor process uniformity.

More Details

Adaptive scanning probe microscopies

Swartzentruber, Brian

This work is comprised of two major sections. In the first section the authors develop multivariate image classification techniques to distinguish and identify surface electronic species directly from multiple-bias scanning tunneling microscope (STM) images. Multiple measurements at each site are used to distinguish and categorize inequivalent electronic or atomic species on the surface via a computerized classification algorithm. Then, comparison with theory or other suitably chosen experimental data enables the identification of each class. They demonstrate the technique by analyzing dual-polarity constant-current topographs of the Ge(111) surface. Just two measurements, negative- and positive-bias topography height, permit pixels to be separated into seven different classes. Labeling four of the classes as adatoms, first-layer atoms, and two inequivalent rest-atom sites, they find excellent agreement with the c(2 x 8) structure. The remaining classes are associated with structural defects and contaminants. This work represents a first step toward developing a general electronic/chemical classification and identification tool for multivariate scanning probe microscopy imagery. In the second section they report measurements of the diffusion of Si dimers on the Si(001) surface at temperatures between room temperature and 128 C using a novel atom-tracking technique that can resolve every diffusion event. The atom tracker employs lateral-positioning feedback to lock the STM probe tip into position above selected atoms with sub-Angstrom precision. Once locked the STM tracks the position of the atoms as they migrate over the crystal surface. By tracking individual atoms directly, the ability of the instrument to measure dynamic events is increased by a factor of {approximately} 1,000 over conventional STM imaging techniques.

More Details

Skewed graph partitioning

Hendrickson, Bruce A.

Graph partitioning is an important abstraction used in solving many scientific computing problems. Unfortunately, the standard partitioning model does not incorporate considerations that are important in many settings. We address this by describing a generalized partitioning model which incorporates the notion of partition skew and is applicable to a variety of problems. We then develop enhancements to several important partitioning algorithms necessary to solve the generalized partitioning problem. Finally we demonstrate the benefit of employing several of these generalized methods to static decomposition of parallel computing problems.

More Details

Z-pinches as intense x-ray sources for high energy density physics application

Matzen, M.K.

Fast z-pinch implosions can convert more than 10% of the stored electrical energy in a pulsed-power accelerator into x rays. These x rays are produced when an imploding cylindrical plasma, driven by the magnetic field pressure associated with very large axial currents, stagnates upon the cylindrical axis of symmetry. On the Saturn pulsed-power accelerator at Sandia National Laboratories, for example, currents of 6 to 8 MA with a risetime of less than 50 ns are driven through cylindrically-symmetric loads, producing implosions velocities as high as 100 cm/{mu}s and x-ray energies as high as 500 kJ. The keV component of the resulting x-ray spectrum has been used for many years 8 a radiation source for material response studies. Alternatively, the x-ray output can be thermalized into a near-Planckian x-ray source by containing it within a large cylindrical radiation case. These large volume, long-lived radiation sources have recently been used for ICF-relevant ablator physics experiments as well as astrophysical opacity and radiation-material interaction experiments. Hydromagnetic Rayleigh-Taylor instabilities and cylindrical load symmetry are critical, limiting factors in determining the assembled plasma densities and temperatures, and thus in the x-ray pulse widths that can be produced on these accelerators. In recent experiments on the Saturn accelerator, these implosion nonuniformities have been minimized by using uniform-fill gas puff loads or by using wire arrays with as many a 192 wires. These techniques produced significant improvements in the pinched plasma quality, Zn reproducibility, and x-ray output power. X-ray pulse widths of less than 5 ns and peak powers of 75{+-}10 TW have been achieved with arrays of 120 tungsten wires. These powers represent greater than a factor of three in power amplification over the electrical power of the Saturn n accelerator, and are a record for x-ray powers in the laboratory.

More Details

A tool to identify parameter errors in finite element models

Mayes, Randall L.

A popular method for updating finite element models with modal test data utilizes optimization of the model based on design sensitivities. The attractive feature of this technique is that it allows some estimate and update of the physical parameters affecting the hardware dynamics. Two difficulties are knowing which physical parameters are important and which of those important parameters are in error. If this is known, the updating process is simply running through the mechanics of the optimization. Most models of real systems have a myriad of parameters. This paper discusses an implementation of a tool which uses the model and test data together to discover which parameters are most important and most in error. Some insight about the validity of the model form may also be obtained. Experience gained from applications to complex models will be shared.

More Details

Testing in support of on-site storage of residues in the Pipe Overpack Container

Ammerman, Douglas

The disposition of the large back-log of plutonium residues at the Rocky Flats Environmental Technology Site (Rocky Flats) will require interim storage and subsequent shipment to a waste repository. Current plans call for disposal at the Waste Isolation Pilot Plant (WIPP) and the transportation to WIPP in the TRUPACT-II. The transportation phase will require the residues to be packaged in a container that is more robust than a standard 55-gallon waste drum. Rocky Flats has designed the Pipe Overpack Container to meet this need. It is desirable to use this same waste packaging for interim on-site storage in non-hardened buildings. To meet the safety concerns for this storage the Pipe Overpack Container has been subjected to a series of tests at Sandia National Laboratories in Albuquerque, New Mexico. In addition to the tests required to qualify the Pipe Overpack Container as a waste container for shipment in the TRUPACT-II several tests were performed solely for the purpose of qualifying the container for interim storage. This report will describe these tests and the packages response to the tests. 12 figs., 3 tabs.

More Details

Reliability performance of pulse discharge capacitors

Edwards, L.R.

There is a void of public specifications for pulse discharge capacitor applications. Sandia National Laboratories has developed, over the past 25 years, specifications and test procedures for evaluating capacitor designs for this specialized use. There are three primary destructive tests that are used to assess the reliability potential of a given design at a required rated voltage. These are ultimate short time breakdown strength, life at voltage, and pulse discharge life. The strategy of the method is to accelerate the test conditions so that failures are observable and then extrapolate to the desired use conditions where the failure rates are low. This paper will present the statistical methodologies employed to analyze experimental data and to provide a point estimate of reliability with a lower confidence bound as a function of rated voltage. In addition, methods for establishing lot-acceptance-criteria specifications will be discussed. The techniques will be illustrated with actual data on a commercially available, low-inductance, pulse-discharge capacitor. The capacitor is an impregnated dual dielectric (mica-paper/polymer film), extended-foil type.

More Details

Non-contact atomic-level interfacial force microscopy

Houston, Jack E.

The scanning force microscopies (notably the Atomic Force Microscope--AFM), because of their applicability to nearly all materials, are presently the most widely used of the scanning-probe techniques. However, the AFM uses a deflection sensor to measure sample/probe forces which suffers from an inherent mechanical instability that occurs when the rate of change of the force with respect to the interfacial separation becomes equal to the spring constant of the deflecting member. This instability dramatically limits the breadth of applicability of AFM-type techniques to materials problems. In the course of implementing a DOE sponsored basic research program in interfacial adhesion, a self-balancing force sensor concept has been developed and incorporated into an Interfacial Force Microscopy (IFM) system by Sandia scientists. This sensor eliminates the instability problem and greatly enhances the applicability of the scanning force-probe technique to a broader range of materials and materials parameters. The impact of this Sandia development was recognized in 1993 by a Department of Energy award for potential impact on DOE programs and by an R and D 100 award for one of the most important new products of 1994. However, in its present stage of development, the IFM is strictly a research-level tool and a CRADA was initiated in order to bring this sensor technology into wide-spread availability by making it accessible in the form of a commercial instrument. The present report described the goals, approach and results of this CRADA effort.

More Details

RCS and antenna modeling with MOM using hybrid meshes

Kotulski, Joseph D.

In this presentation, the authors will investigate the use of hybrid meshes for modeling RCS and antenna problems in three dimensions. They will consider two classes of hybrid basis functions. These include combinations of quadrilateral and triangular meshes for arbitrary 3D geometries, and combinations of axisymmetric body-of-revolution (BOR) basis functions and triangular facets. In particular, they will focus on the problem of enforcing current continuity between two surfaces which are represented by different types of surface discretizations and unknown basis function representations. They will illustrate the use of an operator-based code architecture for the implementation of these formulations, and how it facilitates the incorporation of the various types of boundary conditions in the code. Both serial and parallel code implementation issues for the formulations will be discussed. Results will be presented for both scattering and antenna problems. The emphasis will be on accuracy, and robustness of the techniques. Comparisons of accuracy between triangular meshed and quadrilateral meshed geometries will be shown. The use of hybrid meshes for modeling BORs with attached appendages will also be presented.

More Details

Experiments to investigate direct containment heating phenomena with scaled models of the Calvert Cliffs Nuclear Power Plant

Blanchat, Thomas K.

The Surtsey Test Facility is used to perform scaled experiments simulating High Pressure Melt Ejection accidents in a nuclear power plant (NPP). The experiments investigate the effects of direct containment heating (DCH) on the containment load. The results from Zion and Surry experiments can be extrapolated to other Westinghouse plants, but predicted containment loads cannot be generalized to all Combustion Engineering (CE) plants. Five CE plants have melt dispersal flow paths which circumvent the main mitigation of containment compartmentalization in most Westinghouse PWRs. Calvert Cliff-like plant geometries and the impact of codispersed water were addressed as part of the DCH issue resolution. Integral effects tests were performed with a scale model of the Calvert Cliffs NPP inside the Surtsey test vessel. The experiments investigated the effects of codispersal of water, steam, and molten core stimulant materials on DCH loads under prototypic accident conditions and plant configurations. The results indicated that large amounts of coejected water reduced the DCH load by a small amount. Large amounts of debris were dispersed from the cavity to the upper dome (via the annular gap). 22 refs., 84 figs., 30 tabs.

More Details

General techniques for constrained motion planning

Watterberg, Peter A.

This report presents automatic motion planning algorithms for robotic manipulators performing a variety of tasks. Given a task and a robot manipulator equipped with a tool in its hand, the motion planners compute robot motions to complete the task while respecting manipulator kinematic constraints and avoiding collisions with objects in the robot`s work space. To handle the high complexity of the motion planning problem, a sophisticated search strategy called SANDROS is developed and used to solve many variations of the motion planning problem. To facilitate systematic development of motion planning algorithms, robotic tasks are classified into three categories according to the dimension of the manifold the robot tool has to travel: visit-point (0 dimensional), trace-curve (1 dimensional) and cover-surface (2 dimensional) tasks. The motion planner for a particular dimension is used as a sub-module by the motion planner for the next-higher dimension. This hierarchy of motion planners has led to a set of compact and systematic algorithms that can plan robot motions for many types of robotic operations. In addition, an algorithm is developed that determines the optimal robot-base configuration for minimum cycle time. The SANDROS search paradigm is complete in that it finds a solution path if one exists, up to a user specified resolution. Although its worst-case time complexity is exponential in the degrees of freedom of the manipulator, its average performance is commensurate with the complexity of the solution path. Since solution paths for most of motion planning problems consist of a few monotone segments, the motion planners based on SANDROS search strategy show approximately two-orders of magnitude improvements over existing complete algorithms.

More Details

Experimental time to burnout of a prototypical ITER divertor plate during a simulated loss of flow accident

Watson, R.D.

Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

More Details

A configuration space toolkit for automated spatial reasoning: Technical results and LDRD project final report

Xavier, Patrick G.

A robot`s configuration space (c-space) is the space of its kinematic degrees of freedom, e.g., the joint-space of an arm. Sets in c-space can be defined that characterize a variety of spatial relationships, such as contact between the robot and its environment. C-space techniques have been fundamental to research progress in areas such as motion planning and physically-based reasoning. However, practical progress has been slowed by the difficulty of implementing the c-space abstraction inside each application. For this reason, we proposed a Configuration Space Toolkit of high-performance algorithms and data structures meeting these needs. Our intent was to develop this robotics software to provide enabling technology to emerging applications that apply the c-space abstraction, such as advanced motion planning, teleoperation supervision, mechanism functional analysis, and design tools. This final report presents the research results and technical achievements of this LDRD project. Key results and achievements included (1) a hybrid Common LISP/C prototype that implements the basic C-Space abstraction, (2) a new, generic, algorithm for constructing hierarchical geometric representations, and (3) a C++ implementation of an algorithm for fast distance computation, interference detection, and c-space point-classification. Since the project conclusion, motion planning researchers in Sandia`s Intelligent Systems and Robotics Center have been using the CSTk libcstk.so C++ library. The code continues to be used, supported, and improved by projects in the ISRC.

More Details

Cost analysis of energy storage systems for electric utility applications

Akhil, A.; Swaminathan, S.; Sen, R.K.

Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

More Details

Superconducting technology program Sandia 1996 annual report

Roth, E.P.

Sandia`s Superconductivity Technology Program is a thallium-based high-temperature superconductor (HTS) research and development program consisting of efforts in powder synthesis and process development, open-system thick film conductor development, wire and tape fabrication, and HTS motor design. The objective of this work is to develop high-temperature superconducting conductors (wire and tape) capable of meeting requirements for high-power electrical devices of interest to industry. The research efforts currently underway are: (1) Process development and characterization of thallium-based high-temperature superconducting closed system wire and tape, (2) Investigation of the synthesis and processing of thallium-based thick films using two-zone processing, and (3) Cryogenic design of a 30K superconducting motor. This report outlines the research that has been performed during FY96 in each of these areas.

More Details

Rf-plasma synthesis of nanosize silicon carbide and nitride. Final report

Buss, Richard J.

A pulsed rf plasma technique is capable of generating ceramic particles of 10 manometer dimension. Experiments using silane/ammonia and trimethylchlorosilane/hydrogen gas mixtures show that both silicon nitride and silicon carbide powders can be synthesized with control of the average particle diameter from 7 to 200 nm. Large size dispersion and much agglomeration appear characteristic of the method, in contrast to results reported by another research group. The as produced powders have a high hydrogen content and are air and moisture sensitive. Post-plasma treatment in a controlled atmosphere at elevated temperature (800{degrees}C) eliminates the hydrogen and stabilizes the powder with respect to oxidation or hydrolysis.

More Details

Laboratory creep and mechanical tests on salt data report (1975-1996): Waste Isolation Pilot Plant (WIPP) thermal/structural interactions program

Munson, Darrell E.

The Waste Isolation Pilot Plant (WIPP), a facility located in a bedded salt formation in Carlsbad, New Mexico, is being used by the U.S. Department of Energy to demonstrate the technology for safe handling and disposal of transuranic wastes produced by defense activities in the United States. In support of that demonstration, mechanical tests on salt were conducted in the laboratory to characterize material behavior at the stresses and temperatures expected for a nuclear waste repository. Many of those laboratory test programs have been carried out in the RE/SPEC Inc. rock mechanics laboratory in Rapid City, South Dakota; the first program being authorized in 1975 followed by additional testing programs that continue to the present. All of the WIPP laboratory data generated on salt at RE/SPEC Inc. over the last 20 years is presented in this data report. A variety of test procedures were used in performance of the work including quasi-static triaxial compression tests, constant stress (creep) tests, damage recovery tests, and multiaxial creep tests. The detailed data is presented in individual plots for each specimen tested. Typically, the controlled test conditions applied to each specimen are presented in a plot followed by additional plots of the measured specimen response. Extensive tables are included to summarize the tests that were performed. Both the tables and the plots contain cross-references to the technical reports where the data were originally reported. Also included are general descriptions of laboratory facilities, equipment, and procedures used to perform the work.

More Details

Induced gain in Cr,Nd:GSGG by pulsed X-ray radiation

Brannon, P.J.

A nonnalized X-ray induced gain coefficient, 1.48 x 10{sup -3} cm{sup -1}/krad, has been determined for Cr,Nd:GSGG. Hermes III, a 20 ns, 2 MeV X-ray source, is used to irradiate the sample. Doping levels of 1 x 10{sup 20} and 2 x 10{sup 20} /cm{sup 3} respectively, for Cr and Nd are used. A proposed heuristic model in which excited Gd transfers its excitation to Cr which then transfers its excitation to Nd is described.

More Details

Determining cleanliness levels along the neutron tube manufacturing line

Lopez, Edwin P.

A study is underway to identify a rapid, easy method for determining cleanliness levels during the manufacture of neutron tubes. Due to high reliability concerns associated with neutron tubes, cleanliness levels of metal and ceramic piece parts are critical. Sandia has traditionally used quantitative surface analytical methods, such as Auger Electron Spectroscopy and X-ray Photoelectron Spectroscopy for determining cleanliness levels. A critical disadvantage of these techniques is the time required to perform them. More rapid, reliable methods are needed for in-line testing of neutron tube assemblies. Several methods including contact angle, MESERAN, Fourier Transform Infrared Spectroscopy, and Optically Stimulated Electron Emission measurements are being evaluated as potential candidates. Cleanliness levels for each of these methods have been compared to Auger Electron Spectroscopy results, after processing samples through similar test conditions. An attempt was made to correlate the results from the alternative methods to those of Auger Electron Spectroscopy. Test results are presented.

More Details

A 3-d modular gripper design tool

Brown, R.G.

Modular fixturing kits are sets of components used for flexible, rapid construction of fixtures. A modular vise is a parallel-jaw vise, each jaw of which is a modular fixture plate with a regular grid of precisely positioned holes. To fixture a part, one places pins in some of the holes so that when the vise is closed, the part is reliably located and completely constrained. The modular vise concept can be adapted easily to the design of modular parallel-jaw grippers for robots. By attaching a grid-plate to each jaw of a parallel-jaw gripper, one gains the ability to easily construct high-quality grasps for a wide variety of parts from a standard set of hardware. Wallack and Canny developed an algorithm for planning planar grasp configurations for the modular vise. In this paper, the authors expand this work to produce a 3-d fixture/gripper design tool. They describe several analyses they have added to the planar algorithm, including a 3-d grasp quality metric based on force information, 3-d geometric loading analysis, and inter-gripper interference analysis. Finally, the authors describe two applications of their code. One of these is an internal application at Sandia, while the other shows a potential use of the code for designing part of an agile assembly line.

More Details

Graphical programming of telerobotic tasks

Small, Daniel

With a goal of producing faster, safer, and cheaper technologies for nuclear waste cleanup, Sandia is actively developing and extending intelligent systems technologies. Graphical Programming is a key technology for robotic waste cleanup that Sandia is developing for this goal. This paper describes Sancho, Sandia most advanced Graphical Programming supervisory software. Sancho, now operational on several robot systems, incorporates all of Sandia`s recent advances in supervisory control. Sancho, developed to rapidly apply Graphical Programming on a diverse set of robot systems, uses a general set of tools to implement task and operational behavior. Sancho can be rapidly reconfigured for new tasks and operations without modifying the supervisory code. Other innovations include task-based interfaces, event-based sequencing, and sophisticated GUI design. These innovations have resulted in robot control programs and approaches that are easier and safer to use than teleoperation, off-line programming, or full automation.

More Details

In situ remediation of uranium contaminated groundwater

Dwyer, Brian P.

In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field results are discussed with regard to other potential contaminated groundwater treatment applications.

More Details

Sandia microelectronics development

Weaver, H.T.

An overview of the operations of Sandia`s Microelectronics Development Lab (MDL) is to develop radiation hardened IC, but techniques used for IC processing have been applied to a variety of related technologies such as micromechanics, smart sensors, and packaging.

More Details

A pulse-width modulated, high reliability charge controller for small photovoltaic systems

Hund, Thomas D.

This report presents the results of a development effort to design, test and begin production of a new class of small photovoltaic (PV) charge controllers. Sandia National Laboratories provided technical support, test data and financial support through a Balance-of-System Development contract. One of the objectives of the development was to increase user confidence in small PV systems by improving the reliability and operating life of the system controllers. Another equally important objective was to improve the economics of small PV systems by extending the battery lifetimes. Using new technology and advanced manufacturing techniques, these objectives were accomplished. Because small stand-alone PV systems account for over one third of all PV modules shipped, the positive impact of improving the reliability and economics of PV systems in this market segment will be felt throughout the industry. The results of verification testing of the new product are also included in this report. The initial design goals and specifications were very aggressive, but the extensive testing demonstrates that all the goals were achieved. Production of the product started in May at a rate of 2,000 units per month. Over 40 Morningstar distributors (5 US and 35 overseas) have taken delivery in the first 2 months of shipments. Initial customer reactions to the new controller have been very favorable.

More Details

Wet oxidation of Al{sub x}GA{sub 1-x}As: arsenic barriers on the road to mis

Ashby, C.I.H.; Sullivan, J.P.; Newcomer, P.P.; Missert, N.A.; Hou, H.Q.; Hammons, B.E.; Baca, A.G.

Three characteristic regimes were identified during wet thermal oxidation of AlxGa(1-x)As (x=1 to 0.90) on GaAs: oxidation of Al and Ga in the alloy to form to an amorphous oxide layer, formation and elimination of elemental As and of amorphous As2O3, and crystallization of the oxide film. Residual As can produce up to a 100fold increase in leakage current and a 30% increase in bulk dielectric constant. Very low As levels produce partial Fermi-level pinning at the oxidized AlxGa(1-x)As/GaAs interface. Local Schottky- barrier pinning of the Fermi level at As precipitates at the oxide/GaAs interface may be the source of the apparent high interface state density. The presence of thermodynamically favored interfacial As may impose a fundamental limit on the application of AlGaAs wet oxidation for achieving MIS devices without post-oxidation processing to remove the residual As from the interface.

More Details

Development of a cement-polymer close-coupled subsurface barrier technology

Dwyer, Brian P.

The primary objective of this project was to further develop close-coupled barrier technology for the containment of subsurface waste or contaminant migration. A close-coupled barrier is produced by first installing a conventional cement grout curtain followed by a thin inner lining of a polymer grout. The resultant barrier is a cement polymer composite that has economic benefits derived from the cement and performance benefits from the durable and chemically resistant polymer layer. The technology has matured from a regulatory investigation of issues concerning barriers and barrier materials to a pilot-scale, multiple individual column injections at Sandia National Labs (SNL) to full scale demonstration. The feasibility of this barrier concept was successfully proven in a full scale ``cold site`` demonstration at Hanford, WA. Consequently, a full scale deployment of the technology was conducted at an actual environmental restoration site at Brookhaven National Lab (BNL), Long Island, NY. This paper discusses the installation and performance of a technology deployment implemented at OU-1 an Environmental Restoration Site located at BNL.

More Details

Designed supramolecular assemblies for biosensors and photoactive devices. LDRD final report

Shelnutt, John A.

The objective of this project is the development of a new class of supramolecular assemblies for applications in biosensors and biodevices. The supramolecular assemblies are based on membranes and Langmuir-Blodgett (LB) films composed of naturally-occurring or synthetic lipids, which contain electrically and/or photochemically active components. The LB films are deposited onto electrically-active materials (metal, semiconductors). The active components film components (lipo-porphyrins) at the surface function as molecular recognition sites for sensing proteins and other biomolecules, and the porphyrins and other components (e.g., fullerenes) incorporated into the films serve as photocatalysts and vectorial electron-transport agents. Computer-aided molecular design (CAMD) methods are used to tailor the structure of these film components to optimize function. Molecular modeling is also used to predict the location, orientation, and motion of these molecular components within the films. The result is a variety of extended, self-assembled molecular structures that serve as devices for sensing proteins and biochemicals or as other bioelectronic devices.

More Details

Solar photocatalytic conversion of CO{sub 2} to methanol

Ryba, G.

This report summarizes the three-year LDRD program directed at developing catalysts based on metalloporphyrins to reduce carbon dioxide. Ultimately it was envisioned that such catalysts could be made part of a solar-driven photoredox cycle by coupling metalloporphyrins with semiconductor systems. Such a system would provide the energy required for CO{sub 2} reduction to methanol, which is an uphill 6-electron reduction. Molecular modeling and design capabilities were used to engineer metalloporphyrin catalysts for converting CO{sub 2} to CO and higher carbon reduction products like formaldehyde, formate, and methanol. Gas-diffusion electrochemical cells were developed to carry out these reactions. A tin-porphyrin/alumina photocatalyst system was partially developed to couple solar energy to this reduction process.

More Details

Ion energy distribution functions in inductively coupled RF discharges in mixtures of chlorine and boron trichloride

Woodworth, Joseph R.

Plasma discharges involving mixtures of chlorine and boron trichloride are widely used to etch metals in the production of very-large-scale-integrated circuits. Energetic ions play a critical role in this process, influencing the etch rates, etch profiles, and selectivity to different materials. The authors are using a gridded energy analyzer to measure positive ion energy distributions and fluxes at the grounded electrode of high-density inductively-coupled rf discharges. In this paper, they present details of ion energies and fluxes in discharges containing mixtures of chlorine and boron trichloride.

More Details

Gated frequency-resolved optical imaging with an optical parametric amplifier for medical applications

Cameron, Stewart M.

Implementation of optical imagery in a diffuse inhomogeneous medium such as biological tissue requires an understanding of photon migration and multiple scattering processes which act to randomize pathlength and degrade image quality. The nature of transmitted light from soft tissue ranges from the quasi-coherent properties of the minimally scattered component to the random incoherent light of the diffuse component. Recent experimental approaches have emphasized dynamic path-sensitive imaging measurements with either ultrashort laser pulses (ballistic photons) or amplitude modulated laser light launched into tissue (photon density waves) to increase image resolution and transmissive penetration depth. Ballistic imaging seeks to compensate for these {open_quotes}fog-like{close_quotes} effects by temporally isolating the weak early-arriving image-bearing component from the diffusely scattered background using a subpicosecond optical gate superimposed on the transmitted photon time-of-flight distribution. The authors have developed a broadly wavelength tunable (470 nm -2.4 {mu}m), ultrashort amplifying optical gate for transillumination spectral imaging based on optical parametric amplification in a nonlinear crystal. The time-gated image amplification process exhibits low noise and high sensitivity, with gains greater than 104 achievable for low light levels. We report preliminary benchmark experiments in which this system was used to reconstruct, spectrally upcovert, and enhance near-infrared two-dimensional images with feature sizes of 65 {mu}m/mm{sup 2} in background optical attenuations exceeding 10{sup 12}. Phase images of test objects exhibiting both absorptive contrast and diffuse scatter were acquired using a self-referencing Shack-Hartmann wavefront sensor in combination with short-pulse quasi-ballistic gating. The sensor employed a lenslet array based on binary optics technology and was sensitive to optical path distortions approaching {lambda}/100.

More Details

Development of Alternatives to Pb-Based Solders

Vianco, Paul T.

An experimental program was performed that examined the physical and mechanical properties of several candidate, lead (Pb)-free solder alloys. The project was separated into three tasks designated as follows: (1) Alloy Development, (2) Intermetallic Compound (IMC) Growth, and (3) Mechanical Testing. Task 1, Alloy Development, examined the impact that small Pb additions had on the physical and mechanical properties of several Pb-free solders. Task 2, Intermetallic Compound (IMC) Growth investigated the development of the IMC layer between several Pb-free solder alloys and Cu. Quantitative analyses established the kinetics of layer growth in the solid state as a result of elevated temperature aging treatments, and as a function of the composition of the solder. Liquid state IMC layer growth as well as dissolution rates of Cu substrates by molten solders were quantitatively documented. Task 3, Mechanical Properties, performed a series of experiments that provided fracture toughness measurement, thermomechanical fatigue evaluations, and creep deformation data on a number of the Pb-free solders as well as on Pb-free alloys that had been contaminated with controlled quantities of Pb additions. The data obtained from these tests results relative performance information as well as valuable input data for computer models. Several ancillary tests were also performed to support partner company efforts.

More Details

A JAS3D Material Model for Carbon Black-Filled Rubber

Chambers, Robert S.

Experimental work conducted by D. B. Adolf has shown that a separable K-BKZ constitutive equation works reasonable well in predicting the stress relaxation observed in single step strain experiments for carbon black filled rubber. However, the memory requirements and numerical efficiency of the K-BKZ equation do not make it well suited for use in a production, three-dimensional finite element code. As an alternative, D. J. Segalman, K. Zuo, and D. Parsons have developed a "damage-like" constitutive equation which is computationally attractive. This formalism has been installed in the JAS3D finite element code. The requisite code inputs and numerical details of the constitutive integration are discussed, and solutions to selected problems are presented. Comparisons are made to data collected from both single and double step strain experiments.

More Details

DIAMOND FORTUNE seismic acceleration measurements

Garbin, H.D.

DIAMOND FORTUNE was a nuclear explosion detonated inside an 11 m hemispherical cavity in tuff at the Nevada Test Site. Previous cavity explosions such as STERLING and MILL YARD have shown a substantial decrease in the expected ground motion. These types of cavity tests present a serious problem for a Comprehensive Test Ban (CTB). Not only is detection a problem, but presently there is no seismic method to discriminate between a tamped and cavity explosion. DIAMOND FORTUNE allowed us to examine several aspects of a cavity explosion in the context of a CTB. On this test, there were two groups of accelerometers fielded. One group was located in the free-field at sites above and below the cavity within 30 m of the source. The second group consisted of a line of gauges placed in the invert of P-tunnel extending from 44 m to 224 m from the source. The purpose of this arrangement was to measure ground motion in an effort to detect a non-symmetric radiation pattern due to the hemisphere, examine the high frequency propagation of the free-field signals as a possible discriminate, and calculate the decoupling factor. The radiation pattern experiment was conducted in an effort to determine if the asymmetry of a hemispherical cavity could provide a preferred direction of transmission. The analysis indicated a definite radiation pattern with larger amplitudes transmitted through the spherical surface than the plane surface. The possibility of using high frequency signals as a discriminant of tamped versus cavity explosions is implied by the MILL YARD data. MILL YARD was also a nuclear explosion in an 11 m hemispherical cavity. The free-field ground motion signals from this test (<25 m) contained very large high frequency amplitudes ([approx]1000 Hz) in their spectra. DIAMOND FORTUNE also exhibited high frequency signals with comer frequencies twice that of the scaled tamped DISTANT ZENITH event.

More Details

Cost comparisons of alternative landfill final covers

Dwyer, Stephen F.

A large-scale field demonstration comparing and contrasting final landfill cover designs has been constructed and is currently being monitored. Four alternative cover designs and two conventional designs (a RCRA Subtitle ``D`` Soil Cover and a RCRA Subtitle ``C`` Compacted Clay Cover) were constructed of uniform size, side-by-side. The demonstration is intended to evaluate the various cover designs based on their respective water balance performance, ease and reliability of construction, and cost. This paper provides an overview of the construction costs of each cover design.

More Details
Results 94151–94200 of 99,299
Results 94151–94200 of 99,299