Publications

Results 91276–91300 of 99,299

Search results

Jump to search filters

Effect of Mg ionization efficiency on performance of Npn AlGaN/GaN heterojunction bipolar transistors

Applied Physics Letters

Chang, Ping-Chih; Baca, Albert G.

A drift-diffusion transport model has been used to examine the performance capabilities of AlGaN/GaN Npn heterojunction bipolar transistors (HBTs). The Gummel plot from the first GaN-based HBT structure recently demonstrated is adjusted with simulation by using experimental mobility and lifetime reported in the literature. Numerical results have been explored to study the effect of the p-type Mg doping and its incomplete ionization in the base. The high base resistance induced by the deep acceptor level is found to be the cause of limiting current gain values. Increasing the operating temperature of the device activates more carriers in the base. An improvement of the simulated current gain by a factor of 2 to 4 between 25 and 300 C agrees well with the reported experimental results. A preliminary analysis of high frequency characteristics indicates substantial progress of predicted rf performances by operating the device at higher temperature due to a reduced extrinsic base resistivity.

More Details

Monolithic GaAs surface acoustic wave chemical microsensor array

Hietala, Vincent M.; Casalnuovo, Stephen A.; Heller, Edwin J.; Wendt, Joel R.; Frye-Mason, Gregory C.; Baca, Albert G.

A four-channel surface acoustic wave (SAW) chemical sensor array with associated RF electronics is monolithically integrated onto one GaAs IC. The sensor operates at 690 MHz from an on-chip SAW based oscillator and provides simple DC voltage outputs by using integrated phase detectors. This sensor array represents a significant advance in microsensor technology offering miniaturization, increased chemical selectivity, simplified system assembly, improved sensitivity, and inherent temperature compensation.

More Details

Natural attenuation assessment of multiple VOCs in a deep vadose zone

Miller, David

The fate of six volatile organic compounds (VOC) in a 150-meter deep vadose zone was examined in support of a RCRA Corrective Measures Study of the Chemical Waste Landfill at Sandia National Laboratories, Albuquerque, New Mexico. The study focused on the modeling of potential future transport of the VOCs to exposure media upon the completion of two separate voluntary corrective measures--soil vapor extraction and landfill excavation--designed to significantly reduce contaminant levels in subsurface soils. modeling was performed with R-UNSAT, a finite-difference simulator that was developed by the U.S. Geological Survey. R-UNSAT facilitated a relatively unique and comprehensive assessment of vapor transport because it (1) simulated the simultaneous movement of all six VOCs, taking into account each constituent's diffusion coefficient as affected by its mole fraction within a mixture of chemicals, and (2) permitted simultaneous assessment of risk to human health via volatilization (air) and drinking water (groundwater) pathways. Modeling results suggested that monitored natural attenuation would represent a viable remedial alternative at the landfill after both voluntary corrective measures were completed.

More Details

Active sensors for health monitoring of aging aerospace structures

Redmond, James M.; Roach, Dennis P.; Rackow, Kirk A.

A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (NM) impedance technique are sighted and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high-frequency EIM impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acoustic-ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens, (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.

More Details

Recent plant studies using Victoria 2.0

Bixler, Nathan E.; Gasser, Ronald D.

VICTORIA 2.0 is a mechanistic computer code designed to analyze fission product behavior within the reactor coolant system (RCS) during a severe nuclear reactor accident. It provides detailed predictions of the release of radioactive and nonradioactive materials from the reactor core and transport and deposition of these materials within the RCS and secondary circuits. These predictions account for the chemical and aerosol processes that affect radionuclide behavior. VICTORIA 2.0 was released in early 1999; a new version VICTORIA 2.1, is now under development. The largest improvements in VICTORIA 2.1 are connected with the thermochemical database, which is being revised and expanded following the recommendations of a peer review. Three risk-significant severe accident sequences have recently been investigated using the VICTORIA 2.0 code. The focus here is on how various chemistry options affect the predictions. Additionally, the VICTORIA predictions are compared with ones made using the MELCOR code. The three sequences are a station blackout in a GE BWR and steam generator tube rupture (SGTR) and pump-seal LOCA sequences in a 3-loop Westinghouse PWR. These sequences cover a range of system pressures, from fully depressurized to full system pressure. The chief results of this study are the fission product fractions that are retained in the core, RCS, secondary, and containment and the fractions that are released into the environment.

More Details

Gravity destabilized non-wetting phase invasion in macro-heterogeneous porous media: Near pore scale macro modified invasion percolation simulation of experiments

Water Resources Research

Glass Jr., Robert J.; Conrad, Stephen H.; Yarrington, Lane

The authors reconceptualize macro modified invasion percolation (MMIP) at the near pore (NP) scale and apply it to simulate the non-wetting phase invasion experiments of Glass et al [in review] conducted in macro-heterogeneous porous media. For experiments where viscous forces were non-negligible, they redefine the total pore filling pressure to include viscous losses within the invading phase as well as the viscous influence to decrease randomness imposed by capillary forces at the front. NP-MMIP exhibits the complex invasion order seen experimentally with characteristic alternations between periods of gravity stabilized and destabilized invasion growth controlled by capillary barriers. The breaching of these barriers and subsequent pore scale fingering of the non-wetting phase is represented extremely well as is the saturation field evolution, and total volume invaded.

More Details

Visualization of surfactant enhanced NAPL mobilization and solubilization in a two-dimensional micromodel

Water Resources Research

Glass Jr., Robert J.

Surfactant-enhanced aquifer remediation is an emerging technology for aquifers contaminated with nonaqueous phase liquids (NAPLs). A two-dimensional micromodel and image capture system were applied to observe NAPL mobilization and solubilization phenomena. In each experiment, a common residual NAPL field was established, followed by a series of mobilization and solubilization experiments. Mobilization floods included pure water floods with variable flow rates and surfactant floods with variations in surfactant formulations. At relatively low capillary numbers (N{sub ca}<10{sup {minus}3}), the surfactant mobilization floods resulted in higher NAPL saturations than for the pure water flood, for similar N{sub ca}.These differences in macroscopic saturations are explained by differences in micro-scale mobilization processes. Solubilization of the residual NAPL remaining after the mobilization stage was dominated by the formation of dissolution fingers, which produced nonequilibrium NAPL solubilization. A macroemulsion phase also as observed to form spontaneously and persist during the solubilization stage of the experiments.

More Details

On the continuum-scale simulation of gravity-driven fingers with hysteretic Richards equation: Trucation error induced numerical artifacts

Water Resources Research

Eliassi, Mehdi; Glass Jr., Robert J.

The authors consider the ability of the numerical solution of Richards equation to model gravity-driven fingers. Although gravity-driven fingers can be easily simulated using a partial downwind averaging method, they find the fingers are purely artificial, generated by the combined effects of truncation error induced oscillations and capillary hysteresis. Since Richards equation can only yield a monotonic solution for standard constitutive relations and constant flux boundary conditions, it is not the valid governing equation to model gravity-driven fingers, and therefore is also suspect for unsaturated flow in initially dry, highly nonlinear, and hysteretic media where these fingers occur. However, analysis of truncation error at the wetting front for the partial downwind method suggests the required mathematical behavior of a more comprehensive and physically based modeling approach for this region of parameter space.

More Details

{sup 17}O NMR investigation of oxidative degradation in polymers under gamma-irradiation

Radiation Physics and Chemistry

Alam, Todd M.; Celina, Mathew C.; Assink, Roger A.; Clough, Roger L.; Gillen, Kenneth T.

The {gamma}-irradiated-oxidation of pentacontane (C{sub 50}H{sub 102}) and the polymer polyisoprene was investigated as a function of oxidation level using {sup 17}O nuclear magnetic resonance (NMR) spectroscopy. It is demonstrated that by using {sup 17}O labeled O{sub 2} gas during the {gamma}-irradiation process, details about the oxidative degradation mechanisms can be directly obtained from the analysis of the {sup 17}O NMR spectra. Production of carboxylic acids is the primary oxygen-containing functionality during the oxidation of pentacontane, while ethers and alcohols are the dominant oxidation product observed for polyisoprene. The formation of ester species during the oxidation process is very minor for both materials, with water also being produced in significant amounts during the radiolytic oxidation of polyisoprene. The ability to focus on the oxidative component of the degradation process using {sup 17}O NMR spectroscopy demonstrates the selectivity of this technique over more conventional approaches.

More Details

Making NEPA more effective and economical for the new millennium

Environmental Practice Journal

Wolff, Theodore A.

This paper focuses on a ten-element strategy for streamlining the NEPA process in order to achieve the Act's objectives while easing the considerable burden on agencies, the public, and the judicial system. In other words, this paper proposes a strategy for making NEPA work better and cost less. How these ten elements are timed and implemented is critical to any successful streamlining. The strategy elements discussed in this paper, in no particular order of priority, are as follows: (1) integrate the NEPA process with other environmental compliance and review procedures; (2) accelerate the decision time for determining the appropriate level of NEPA documentation; (3) conduct early and thorough internal EIS (or EA) scoping before public scoping or other public participation begins; (4) organize and implement public scoping processes that are more participatory than confrontational; (5) maintain an up-to-date compendium of environmental baseline information; (6) prepare more comprehensive, broad-scope umbrella EISs that can be used effectively for tiering; (7) encourage preparation of annotated outlines with detailed guidance that serve as a road map for preparation of each EIS or EA; (8) decrease the length and complexity of highly technical portions of NEPA documents; (9) increase and systematize NEPA compliance outreach, training, and organizational support; and (10) work diligently to influence the preparation of better organized, shorter, and more readable NEPA documents.

More Details

Developing collaborative environments - A Holistic software development methodology

Petersen, Marjorie B.; Mitchiner, John L.

Sandia National Laboratories has been developing technologies to support person-to-person collaboration and the efforts of teams in the business and research communities. The technologies developed include knowledge-based design advisors, knowledge management systems, and streamlined manufacturing supply chains. These collaborative environments in which people can work together sharing information and knowledge have required a new approach to software development. The approach includes an emphasis on the requisite change in business practice that often inhibits user acceptance of collaborative technology. Leveraging the experience from this work, they have established a multidisciplinary approach for developing collaborative software environments. They call this approach ``A Holistic Software Development Methodology''.

More Details

Ultrathin aluminum oxide films: Al-sublattice structure and the effect of substrate on ad-metal adhesion

Surface Science

Jennison, Dwight R.; Bogicevic, Alexander

First principles density-functional slab calculations are used to study 5 {angstrom} (two O-layer) Al{sub 2}O{sub 3} films on Ru(0001) and Al(111). Using larger unit cells than in a recent study, it is found that the lowest energy stable film has an even mix of tetrahedral (t) and octahedral (o) site Al ions, and thus most closely resembles the {kappa}-phase of bulk alumina. Here, alternating zig-zag rows of t and o occur within the surface plane, resulting in a greater average lateral separation of the Al-ions than with pure t or o. A second structure with an even mix of t and o has also been found, consisting of alternating stripes. These patterns mix easily, can exist in three equivalent directions on basal substrates, and can also be displaced laterally, suggesting a mechanism for a loss of long-range order in the Al-sublattice. While the latter would cause the film to appear amorphous in diffraction experiments, local coordination and film density are little affected. On a film supported by rigid Ru(0001), overlayers of Cu, Pd, and Pt bind similarly as on bulk truncated {alpha}-Al{sub 2}O{sub 3}(0001). However, when the film is supported by soft Al(111), the adhesion of Cu, Pd, and Pt metal overlayers is significantly increased: Oxide-surface Al atoms rise so only they contact the overlayer, while substrate Al metal atoms migrate into the oxide film. Thus the binding energy of metal overlayers is strongly substrate dependent, and these numbers for the above Pd-overlayer systems bracket a recent experimentally derived value for a film on NiAl(110).

More Details

A nonplanar porphyrin-based receptor molecule for chiral amine ligands

Journal of Chemical Society, Chemical Communication

Shelnutt, John A.

A novel porphyrin-based receptor molecule for chiral amine ligands is described in which nonplanarity of the porphyrin macrocycle is used to orient the ligand and to enhance porphyrin-ligand interactions. The porphyrin macrocycle provides a versatile platform upon which to build elaborate superstructures, and this feature coupled with a rich and well-developed synthetic chemistry has led to the synthesis of many elegant models of heme protein active sites and numerous porphyrin-based receptor molecules. One design feature which is not usually considered in the design of porphyrin-based receptor molecules is nonplanarity of the porphyrin ring, although there are a few systems such as the pyridine sensitive Venus Flytrap and the chirality-memory molecule which illustrate that nonplanar porphyrin-based receptors can display unique and interesting behavior. Given the novel properties of these receptors and the continuing interest in the effects of nonplanarity on the properties of porphyrins the authors decided to investigate in more detail the potential applications of nonplanarity in the design of porphyrin-based receptors. Herein, they describe the design, synthesis, and characterization of a new kind of nonplanar porphyrin-based receptor molecule for chiral amines.

More Details

Synthesis and unusual properties of the first 2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetraalkylporphyrin

Chemical Society, Chemical Communications

Shelnutt, John A.

The new perhalogenated porphyrin 2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetrakis(trifluoromethyl)porphinato-nickel(II) exhibits several striking features, including an extremely ruffled macrocycle with a very short Ni-N distance, an unusually red-shifted optical spectrum, and, surprisingly, hindered rotation of the meso-trifluoromethyl substituents ({Delta}G{sub 278}{sup +} = 47 kJ/mol).

More Details

A 3-D SAR approach to IFSAR processing

Doerry, Armin W.; Bickel, Douglas L.

Interferometric SAR (IFSAR) can be shown to be a special case of 3-D SAR image formation. In fact, traditional IFSAR processing results in the equivalent of merely a super-resolved, under-sampled, 3-D SAR image. However, when approached as a 3-D SAR problem, a number of IFSAR properties and anomalies are easily explained. For example, IFSAR decorrelation with height is merely ordinary migration in 3-D SAR. Consequently, treating IFSAR as a 3-D SAR problem allows insight and development of proper motion compensation techniques and image formation operations to facilitate optimal height estimation. Furthermore, multiple antenna phase centers and baselines are easily incorporated into this formulation, providing essentially a sparse array in the elevation dimension. This paper shows the Polar Format image formation algorithm extended to 3 dimensions, and then proceeds to apply it to the IFSAR collection geometry. This suggests a more optimal reordering of the traditional IFSAR processing steps.

More Details

Longevity improvement of optically activated, high gain GaAs photoconductive semiconductor switches

Mar, Alan; Loubriel, Guillermo M.; Zutavern, Fred J.; O'Malley, Martin W.; Helgeson, Wesley D.; Brown, Darwin J.; Hjalmarson, Harold P.; Baca, Albert G.

The longevity of high gain GaAs photoconductive semiconductor switches (PCSS) has been extended to over 100 million pulses at 23A, and over 100 pulses at 1kA. This is achieved by improving the ohmic contacts by doping the semi-insulating GaAs underneath the metal, and by achieving a more uniform distribution of contact wear across the entire switch by distributing the trigger light to form multiple filaments. This paper will compare various approaches to doping the contacts, including ion implantation, thermal diffusion, and epitaxial growth. The device characterization also includes examination of the filament behavior using open-shutter, infra-red imaging during high gain switching. These techniques provide information on the filament carrier densities as well as the influence that the different contact structures and trigger light distributions have on the distribution of the current in the devices. This information is guiding the continuing refinement of contact structures and geometries for further improvements in switch longevity.

More Details

Use of self-assembled monolayers to control interface bonding in a model study of interfacial fracture

Kent, Michael S.; Yim, Hyun Y.; Matheson, Aaron J.; Reedy, Earl D.

The relationship between the nature and spatial distribution of fundamental interfacial interactions and fracture stress/fracture toughness of a glassy adhesive-inorganic solid joint is not understood. This relationship is important from the standpoint of designing interfacial chemistry sufficient to provide the level of mechanical strength required for a particular application. In addition, it is also important for understanding the effects of surface contamination. Different types of contamination, or different levels of contamination, likely impact joint strength in different ways. Furthermore, the relationship is also important from the standpoint of aging. If interfacial chemical bonds scission over time due to the presence of a contaminant such as water, or exposure to UV, etc, the relationship between joint strength/fracture toughness and interface strength is important for predicting reliability with time. A fundamental understanding of the relationship between joint strength and fundamental interfacial interactions will give insight into these issues.

More Details

Structure within thin epoxy films revealed by solvent swelling: A neutron reflectivity study

Kent, Michael S.; Yim, Hyun Y.; Mcnamara, William F.

The focus of this work is the structure within highly crosslinked, two component epoxy films. The authors examine variations in crosslink density within thin epoxy films on silicon substrates by solvent swelling. The method is based on the fact that the equilibrium volume fraction of a swelling solvent is strongly dependent upon the local crosslink density. The authors examine the volume fraction profile of the good solvent nitrobenzene through the epoxy films by neutron reflection. Isotopic substitution is used to provide contrast between the epoxy matrix and the swelling solvent.

More Details

Results of the Boeing/DOE DECC Phase 1 stirling engine project

Diver, Richard B.

Phase I of Boeing Company/DOE Dish Engine Critical Component (DECC) Project started in April of 1998 and was completed in 1999. The Phase I objectives, schedule, and test results are presented in this paper. These data shows the power, energy, and mirror performance are comparable to that when the hardware was first manufactured 15 years ago. During the Phase I and initial Phase II test period the on-sun system accumulated over 3,800 hours of solar-powered operating time, accumulated over 4,500 hours of concentrator solar tracking time, and generated over 50,000 kWh of grid-compatible electrical energy. The data also shows that the system was available 95 {percent} of the time when the sun's insolation level was above approximately 300 w/m{sup 2}, and achieved a daily energy efficiency between 20{percent} and 26{percent}. A second concentrator was refurbished during Phase I and accumulated over 2,200 hours of solar track time. A second Stirling engine operated 24 hours a day in a test cell in Sweden and accumulated over 6,000 test hours. Discussion of daily operation shows no major problems encountered during the testing that would prevent commercialization of the technology. Further analysis of the test data shows that system servicing with hydrogen, coolant and lubricating oil should not be a major O and M cost.

More Details

Solar Two: A successful power tower demonstration project

Reilly, Hugh E.; Pacheco, James E.

Solar Two, a 10MWe power tower plant in Barstow, California, successfully demonstrated the production of grid electricity at utility-scale with a molten-salt solar power tower. This paper provides an overview of the project, from inception in 1993 to closure in the spring of 1999. Included are discussions of the goals of the Solar Two consortium, the planned-vs.-actual timeline, plant performance, problems encountered, and highlights and successes of the project. The paper concludes with a number of key results of the Solar Two test and evaluation program.

More Details

Robotic system for glovebox size reduction

Kwok, Kwan S.; Mcdonald, Michael J.

The Intelligent Systems and Robotics Center (ISRC) at Sandia National Laboratories (SNL) is developing technologies for glovebox size reduction in the DOE nuclear complex. A study was performed for Kaiser-Hill (KH) at the Rocky Flats Environmental Technology Site (RFETS) on the available technologies for size reducing the glovebox lines that require size reduction in place. Currently, the baseline approach to these glovebox lines is manual operations using conventional mechanical cutting methods. The study has been completed and resulted in a concept of the robotic system for in-situ size reduction. The concept makes use of commercially available robots that are used in the automotive industry. The commercially available industrial robots provide high reliability and availability that are required for environmental remediation in the DOE complex. Additionally, the costs of commercial robots are about one-fourth that of the custom made robots for environmental remediation. The reason for the lower costs and the higher reliability is that there are thousands of commercial robots made annually, whereas there are only a few custom robots made for environmental remediation every year. This paper will describe the engineering analysis approach used in the design of the robotic system for glovebox size reduction.

More Details

Solar Two technology for Mexico

Revista Solar

Kolb, Gregory J.; Strachan, John W.

Solar power towers, based on molten salt technology, have been the subject of extensive research and development since the late 1970s. In the mid 1980s, small experimental plants were successfully fielded in the USA and France that demonstrated the feasibility of the concept at a 1 to 2 MW{sub e} scale. Systems analyses indicate this technology will be cost competitive with coal-fired power plants after scaling-up plant size to the 100 to 200 MW{sub e} range. To help bridge the scale-up gap, a 10 MW{sub e} demonstration project known as Solar Two, was successfully operated in California, USA from 1996 to 1999. The next logical step could be to scale-up further and develop a 30 MW{sub e} project within the country of Mexico. The plant could be built by an IPP industrial consortium consisting of USA's Boeing and Bechtel Corporations, combined with Mexican industrial and financial partners. Plausible technical and financial characteristics of such a ``Solar-Two-type'' Mexican project are discussed in this paper.

More Details

CTBT integrated verification system evaluation model supplement

Edenburn, Michael W.; Bunting, Marcus; Payne Jr., Arthur C.; Trost, Lawrence

Sandia National Laboratories has developed a computer based model called IVSEM (Integrated Verification System Evaluation Model) to estimate the performance of a nuclear detonation monitoring system. The IVSEM project was initiated in June 1994, by Sandia's Monitoring Systems and Technology Center and has been funded by the U.S. Department of Energy's Office of Nonproliferation and National Security (DOE/NN). IVSEM is a simple, ''top-level,'' modeling tool which estimates the performance of a Comprehensive Nuclear Test Ban Treaty (CTBT) monitoring system and can help explore the impact of various sensor system concepts and technology advancements on CTBT monitoring. One of IVSEM's unique features is that it integrates results from the various CTBT sensor technologies (seismic, in sound, radionuclide, and hydroacoustic) and allows the user to investigate synergy among the technologies. Specifically, IVSEM estimates the detection effectiveness (probability of detection), location accuracy, and identification capability of the integrated system and of each technology subsystem individually. The model attempts to accurately estimate the monitoring system's performance at medium interfaces (air-land, air-water) and for some evasive testing methods such as seismic decoupling. The original IVSEM report, CTBT Integrated Verification System Evaluation Model, SAND97-25 18, described version 1.2 of IVSEM. This report describes the changes made to IVSEM version 1.2 and the addition of identification capability estimates that have been incorporated into IVSEM version 2.0.

More Details

Prediction of metal sorption in soils

Westrich, Henry R.; Anderson Jr., Harold L.; Arthur, Sara E.; Brady, Patrick V.; Cygan, Randall T.; Liang, Jianjie; Zhang, Pengchu

Radionuclide transport in soils and groundwaters is routinely calculated in performance assessment (PA) codes using simplified conceptual models for radionuclide sorption, such as the K{sub D} approach for linear and reversible sorption. Model inaccuracies are typically addressed by adding layers of conservativeness (e.g., very low K{sub D}'s), and often result in failed transport predictions or substantial increases in site cleanup costs. Realistic assessments of radionuclide transport over a wide range of environmental conditions can proceed only from accurate, mechanistic models of the sorption process. They have focused on the sorption mechanisms and partition coefficients for Cs{sup +}, Sr{sup 2+} and Ba{sup 2+} (analogue for Ra{sup 2+}) onto iron oxides and clay minerals using an integrated approach that includes computer simulations, sorption/desorption measurements, and synchrotron analyses of metal sorbed substrates under geochemically realistic conditions. Sorption of Ba{sup 2+} and Sr{sup 2+} onto smectite is strong, pH-independent, and fully reversible, suggesting that cation exchange at the interlayer basal sites controls the sorption process. Sr{sup 2+} sorbs weakly onto geothite and quartz, and is pH-dependent. Sr{sup 2+} sorption onto a mixture of smectite and goethite, however, is pH- and concentration dependent. The adsorption capacity of montmorillonite is higher than that of goethite, which may be attributed to the high specific surface area and reaction site density of clays. The presence of goethite also appears to control the extent of metal desorption. In-situ, extended X-ray absorption fine structure (EXAFS) spectroscopic measurements for montmorillonite and goethite show that the first shell of adsorbed Ba{sup 2+} is coordinated by 6 oxygens. The second adsorption shell, however, varies with the mineral surface coverage of adsorbed Ba{sup 2+} and the mineral substrate. This suggests that Ba{sup 2+} adsorption on mineral surfaces involves more than one mechanism and that the stability of sorbed complexes will be affected by substrate composition. Molecular modeling of Ba{sup 2+} sorption on goethite and Cs{sup +} sorption on kaolinite surfaces were performed using molecular dynamics techniques with improved Lennard-Jones interatomic potentials under periodic boundary conditions. Ba{sup 2+} was observed to have a preference for inner sphere sorption onto goethite, with the (101) and (110) surfaces representing the controlling sorption surfaces for bulk K{sub D} measurements. Large-scale simulations of Cs{sup +} sorption on kaolinite (1000's of atoms) provide a statistical basis for the theoretical evaluation and prediction of Cs{sup +} K{sub D} values. Results suggest the formation of a strong inner sphere complex for Cs{sup +} on the kaolinite edge surfaces and a weakly bound outer sphere complex on the hydroxyl basal surface.

More Details
Results 91276–91300 of 99,299
Results 91276–91300 of 99,299