A Synthetic Aperture Radar (SAR) which employs direct IF sampling can significantly reduce the complexity of the analog electronics prior to the analog-to-digital converter (ADC). For relatively high frequency IF bands, a wide-bandwidth track-and-hold amplifier (THA) is required prior to the ADC. The THA functions primarily as a means of converting, through bandpass sampling, the IF signal to a baseband signal which can be sampled by the ADC. For a wide-band, high dynamic-range receiver system, such as a SAR receiver, stringent performance requirements are placed on the THA. We first measure the THA parameters such as gain, gain compression, third-order intercept (TOI), signal-to-noise ratio (SNR), spurious-free dynamic-range (SFDR), noise figure (NF), and phase noise. The results are then analyzed in terms of their respective impact on the overall performance of the SAR. The specific THA under consideration is the Rockwell Scientific RTH010.
This report describes a 3-D fluid mechanics code for predicting flow past bluff bodies whose surfaces can be assumed to be made up of shell elements that are simply connected. Version 1.0 of the VIPAR code (Vortex Inflation PARachute code) is described herein. This version contains several first order algorithms that we are in the process of replacing with higher order ones. These enhancements will appear in the next version of VIPAR. The present code contains a motion generator that can be used to produce a large class of rigid body motions. The present code has also been fully coupled to a structural dynamics code in which the geometry undergoes large time dependent deformations. Initial surface geometry is generated from triangular shell elements using a code such as Patran and is written into an ExodusII database file for subsequent input into VIPAR. Surface and wake variable information is output into two ExodusII files that can be post processed and viewed using software such as EnSight{trademark}.
The specific problem to be addressed in this work is the secondary combustion that arises from shock-induced mixing in volumetric explosives. It has been recognized that the effects of combustion due to secondary mixing can greatly alter the expansion of gases and dispersal of high-energy explosive. Furthermore, this enhanced effect may be a tailored feature for the new energetic material systems. One approach for studying this problem is based on the use of Large Eddy Simulation (LES) techniques. In this approach, the large turbulent length scales of motion are simulated directly while the small scales of turbulent motion are explicitly treated using a subgrid scale (SGS) model. The focus of this effort is to develop a SGS model for combustion that is applicable to shock-induced combustion events using probability density function (PDF) approaches. A simplified presumed PDF combustion model is formulated and implemented in the CTH shock physics code. Two classes of problems are studied using this model. The first is an isolated piece of reactive material burning with the surrounding air. The second problem is the dispersal of highly reactive material due to a shock driven explosion event. The results from these studies show the importance of incorporating a secondary combustion modeling capability and the utility of using a PDF-based description to simulate these events.
The lack of protection for semiconductor bridges (SCBs) against human electrostatic discharge (ESD) presents an obstacle to widespread use of this device. The goal of this research is to protect SCB initiators against pin-to-pin ESD without affecting their performance. Two techniques were investigated. In the first, a parallel capacitor is used to attenuate high frequencies. The second uses a parallel zener diode to limit the voltage amplitude. Both the 1 {micro}F capacitor and the 14 V zener diode protected the SCBs from ESD. The capacitor provided the best protection. The protection circuits had no effect on the SCB's threshold voltage. The function time for the CP-loaded SCBs with capacitors was about 11 {micro}s when fired by a firing set charged to 40 V. The SCBs failed to function when protected by the 6 V and 8 V zeners. The 51 V zener did not provide adequate protection against ESD. The parallel capacitor succeeded in protecting SCB initiators against pin-to-pin ESD without affecting their performance. Additional experiments should be done on SCBs and actual detonators to further quantify the effectiveness of this technique. Methods for retrofitting existing SCB initiators and integrating capacitors into future devices should also be explored.
This report describes the PDF Object Linking Extension (POLE) and how it came about. POLE is an extension of an existing DXL script called Outdoors that provides a linking mechanism to files outside of DOORS. Our modifications expand the script's capabilities to link to bookmarks within PDF documents. PDF linking allows for traceability to be maintained between DOORS objects and the requirements within PDF files.
Foliage penetrating (FOPEN) synthetic aperture radar (SAR) systems are capable of producing images of targets concealed under a foliage canopy. The quality and interpretability of these images, however, is generally limited by dense foliage clutter and by fundamental foliage-induced image degradation. Use of a polarimetric SAR to provide multiple polarization channels can mitigate these effects by offering target and scene information beyond that provided by a single-polarization SAR. This paper presents the results of a literature survey to investigate the use of multiple-polarization data in conjunction with FOPEN SAR applications. The effects of foliage propagation on SAR image quality are briefly summarized. Various approaches to multiple-polarization-based FOPEN target detection are described. Although literature concerning FOPEN target recognition is scarce, the use of multiple-polarization data for in-the-clear target recognition is described. The applicability of various target detection and recognition applications for use with concealed target SAR (CTSAR) imagery is considered.
The goal of this LDRD was to engineer further improvements in a novel electron tunneling device, the double electron layer tunneling transistor (DELTT). The DELTT is a three terminal quantum device, which does not require lateral depletion or lateral confinement, but rather is entirely planar in configuration. The DELTT's operation is based on 2D-2D tunneling between two parallel 2D electron layers in a semiconductor double quantum well heterostructure. The only critical dimensions reside in the growth direction, thus taking full advantage of the single atomic layer resolution of existing semiconductor growth techniques such as molecular beam epitaxy. Despite these advances, the original DELTT design suffered from a number of performance short comings that would need to be overcome for practical applications. These included (i)a peak voltage too low ({approx}20 mV) to interface with conventional electronics and to be robust against environmental noise, (ii) a low peak current density, (iii) a relatively weak dependence of the peak voltage on applied gate voltage, and (iv) an operating temperature that, while fairly high, remained below room temperature. In this LDRD we designed and demonstrated an advanced resonant tunneling transistor that incorporates structural elements both of the DELTT and of conventional double barrier resonant tunneling diodes (RTDs). Specifically, the device is similar to the DELTT in that it is based on 2D-2D tunneling and is controlled by a surface gate, yet is also similar to the RTD in that it has a double barrier structure and a third collector region. Indeed, the device may be thought of either as an RTD with a gate-controlled, fully 2D emitter, or alternatively, as a ''3-layer DELTT,'' the name we have chosen for the device. This new resonant tunneling transistor retains the original DELTT advantages of a planar geometry and sharp 2D-2D tunneling characteristics, yet also overcomes the performance shortcomings of the original DELTT design. In particular, it exhibits the high peak voltages and current densities associated with conventional RTDs, allows sensitive control of the peak voltage by the control gate, and operates nearly at room temperature. Finally, we note under this LDRD we also investigated the use of three layer DELTT structures as long wavelength (Terahertz) detectors using photon-assisted tunneling. We have recently observed a narrowband (resonant) tunable photoresponse in related structures consisting of grating-gated double quantum wells, and report on that work here as well.
Sandia National Laboratories has developed a Near Real Time Range Safety Analysis Tool named PREDICT that is based upon a probabilistic range safety analysis process. Probabilistic calculations of risk may be used in place of the total containment of potentially hazardous debris during a missile launch operation. Impact probabilities are computed based upon probabilistic density functions, Monte Carlo trajectories of dispersion events, and missile failure scenarios. Impact probabilities are then coupled with current demographics (land populations, commercial and military ship traffic, and aircraft traffic) to produce expected casualty predictions for a particular launch window. Historically, these calculations required days of computer time to finalize. Sandia has developed a process that utilizes the IBM SP machines at the Maui High Performance Computing Center and at the Arctic Region Supercomputing Center to reduce the computation time from days to as little as an hour or two. This analysis tool then allows the Missile Flight Safety Officer to make launch decisions based on the latest information (winds, ship, and aircraft movements) utilizing an intelligent risk management approach. This report provides a user's manual for PREDICT version 3.3.
The highly leveraged, asymmetric attacks of September 11th have launched the nation on a vast ''War on Terrorism''. Now that our vulnerabilities and the enemies' objectives and determination have been demonstrated, we find ourselves rapidly immersed in a huge, complex problem that is virtually devoid of true understanding while being swamped with resources and proposed technologies for solutions. How do we win this war? How do we make sure that we are making the proper investments? What things or freedoms or rights do we have to give up to win? Where do we even start? In analyzing this problem, many similarities to mankind's battle with uncontrolled fire and the threat it presented to society were noted. Major fires throughout history have destroyed whole cities and caused massive loss of life and property. Solutions were devised that have gradually, over several hundred years, reduced this threat to a level that allows us to co-exist with the threat of fire by applying constant vigilance and investments in fire protection, but without living in constant fear and dread from fire. We have created a multi-pronged approach to fire protection that involves both government and individuals in the prevention, mitigation, and response to fires. Fire protection has become a virtually unnoticed constant in our daily lives; we will have to do the same for terrorism. This paper discusses the history of fire protection and draws analogies to our War on Terrorism. We have, as a society, tackled and successfully conquered a problem as big as terrorism. From this battle, we can learn and take comfort.
Arsenic removal technologies that are effective at the tens of ppb level include coagulation, followed by settling/microfiltration, ion exchange by mineral surfaces,and pressure-driven membrane processes (reverse osmosis, nanofiltration and ultrafiltration). This report describes the fundamental mechanisms of operation of the arsenic removal systems and addresses the critical issues of arsenic speciation, source water quality on the performance of the arsenic removal systems and costs associated with the different treatment technology categories.
This report describes the results of research and development in the area of communication among disparate species of software agents. The two primary elements of the work are the formation of ontologies for use by software agents and the means by which software agents are instructed to carry out complex tasks that require interaction with other agents. This work was grounded in the areas of commercial transport and cybersecurity.
The development and testing of a new technique for blending of electrolyte-binder (separator) mixes for use in thermal batteries is described. The original method of blending such materials at Sandia involved liquid Freon TF' as a medium. The ban on the use of halogenated solvents throughout much of the Department of Energy complex required the development of an alternative liquid medium as a replacement. The use of liquid nitrogen (LN) was explored and developed into a viable quality process. For comparison, a limited number of dry-blending tests were also conducted using a Turbula mixer. The characterization of pellets made from LN-blended separators involved deformation properties at 530 C and electrolyte-leakage behavior at 400 or 500 C, as well as performance in single-cells and five-cell batteries under several loads. Stack-relaxation tests were also conducted using 10-cell batteries. One objective of this work was to observe if correlations could be obtained between the mechanical properties of the separators and the performance in single cells and batteries. Separators made using three different electrolytes were examined in this study. These included the LiCl-KCl eutectic, the all-Li LiCl-LiBr-LiF electrolyte, and the low-melting LiBr-KBr-LiF eutectic. The electrochemical performance of separator pellets made with LN-blended materials was compared to that for those made with Freon T P and, in some cases, those that were dry blended. A satisfactory replacement MgO (Marinco 'OL', now manufactured by Morton) was qualified as a replacement for the standard Maglite 'S' MgO that has been used for years but is no longer commercially available. The separator compositions with the new MgO were optimized and included in the blending and electrochemical characterization tests.
Many governmental and corporate organizations are interested in tracking materials and/or information through a network. Often, as in the case of the U.S. Customs Service, the traffic is recorded as transactions through a large number of checkpoints with a correspondingly complex network. These networks will contain large numbers of uninteresting transactions that act as noise to conceal the chains of transactions of interest, such as drug trafficking. We are interested in finding significant paths in transaction data containing high noise levels, which tend to make traditional graph visualization methods complex and hard to understand. This paper covers the evolution of a series of graphing methods designed to assist in this search for paths-from 1-D to 2-D to 3-D and beyond.
Endospores of the bacterium, Bacillus subfilis, have been shown to exhibit a synergistic rate of cell death when treated with particular levels of heat and ionizing radiation in combination. This synergism has been documented for a number of different organisms at various temperatures and radiation doses (Sivinski, H.D., D.M. Garst, M.C. Reynolds, C.A. Trauth, Jr., R.E. Trujillo, and W.J. Whitfield, ''The Synergistic Inactivation of Biological Systems by Thermoradiation,'' Industrial Sterilization, International Symposium, Amsterdam, 1972, Duke University Press, Durham, NC, pp. 305-335). However, the mechanism of the synergistic action is unknown. This study attempted to determine whether the mechanism of synergism was specifically connected to the DNA strand breakage--either single strand breakage or double strand breakage. Some work was also done to examine the effect of free radicals and ions created in the spore body by the radiation treatments, as well as to determine the functionality of repair enzymes following heat, radiation, and thermoradiation treatments. Bacillus subtilis spores were treated at combinations of 33 kr/hr, 15 kr/hr, 105 C, 85 C, 63 C, and 50 C. Some synergistic correlation was found with the number of double strand breaks, and a strong correlation was found with the number of single strand breaks. In cases displaying synergism of spore killing, single strand breakage while the DNA was in a denatured state is suspected as a likely mechanism. DNA was damaged more by irradiation in the naked state than when encased within the spore, indicating that the spore encasement provides an overall protective effect from radiation damage in spite of free radicals and ions which may be created from molecules other than the DNA molecule within the spore body. Repair enzymes were found to be functional following treatments by radiation only, heat only, and thermoradiation.
Photovoltaics is the utility connected distributed energy resource (DER) that is in widespread use today. It has one element, the inverter, which is common with all DER sources except rotating generators. The inverter is required to transfer dc energy to ac energy. With all the DER technologies, (solar, wind, fuel cells, and microturbines) the inverter is still an immature product that will result in reliability problems in fielded systems. Today, the PV inverter is a costly and complex component of PV systems that produce ac power. Inverter MTFF (mean time to first failure) is currently unacceptable. Low inverter reliability contributes to unreliable fielded systems and a loss of confidence in renewable technology. The low volume of PV inverters produced restricts the manufacturing to small suppliers without sophisticated research and reliability programs or manufacturing methods. Thus, the present approach to PV inverter supply has low probability of meeting DOE reliability goals. DOE investments in power electronics are intended to address the reliability and cost of power electronics. This report details the progress of power electronics, identifies technologies that are in current use, and explores new approaches that can provide significant improvements in inverter reliability while leading to lower cost. A key element to improved inverter design is the systems approach to design. This approach includes a list of requirements for the product being designed and a preliminary requirements document is a part of this report. Finally, the design will be for a universal inverter that can be applied to several technologies. The objective of a universal inverter is to increase the quantity being manufactured so that mass-manufacturing techniques can be applied. The report includes the requirements and recommended design approaches for a new inverter with a ten-year mean time to first failure (MTFF) and with lower cost. This development will constitute a ''leap forward'' in capability that leverages emerging technologies and best manufacturing processes to produce a new, high reliability, inverter. The targeted inverter size is from two to ten kilowatts. The report is organized into four sections. A brief introduction by Sandia is followed by Section Two from Millennium Technologies (a company with UPS experience). Section Three is provided by Xantrex (a PV manufacturing company) and the University of Minnesota provided Section Four. This report is very detailed and provides inverter design information that is irrelevant to the layman. It is intended to be a comprehensive documentation of proven technology and the manufacturing skills required to produce a high reliability inverter. An accompanying report will provide a summary of the recommended approach for inverter development.
Since 1983, ground surface elevation data from the US DOE West Hackberry Strategic Petroleum crude oil storage facility has been routinely collected. The data have been assimilated, analyzed, and presented in terms of absolute elevations, subsidence rate, and estimates of volumetric changes of the storage facility. The information presented impacts operations and maintenance of the facility, and provides important constraints on the interpretation of ongoing structural analyses of the facility.
The Strategic Petroleum Reserve site at West Hackberry, Louisiana has historically experienced casing leaks. Numerous West Hackberry oil storage caverns have wells exhibiting communication between the interior 10 3/4 x 20-inch (oil) annulus and the ''outer cemented'' 20 x 26-inch annulus. Well 108 in Cavern 108 exhibits this behavior. It is thought that one, if not the primary, cause of this communication is casing thread leaks at the 20-inch casing joints combined with microannuli along the cement casing interfaces and other cracks/flaws in the cemented 20 x 26-inch annulus. An operation consisting of a series of nitrogen leak tests, similar to cavern integrity tests, was performed on Cavern 108 in an effort to determine the leak horizons and to see if these leak horizons coincided with those of casing joints. Certain leaky, threaded casing joints were identified between 400 and 1500 feet. A new leak detection procedure was developed as a result of this test, and this methodology for identifying and interpreting such casing joint leaks is presented in this report. Analysis of the test data showed that individual joint leaks could be successfully identified, but not without some degree of ambiguity. This ambiguity is attributed to changes in the fluid content of the leak path (nitrogen forcing out oil) and possibly to very plausible changes in characteristics of the flow path during the test. These changes dominated the test response and made the identification of individual leak horizons difficult. One consequence of concern from the testing was a progressive increase in the leak rate measured during testing due to nitrogen cleaning small amounts of oil out of the leak paths and very likely due to the changes of the leak path during the flow test. Therefore, careful consideration must be given before attempting similar tests. Although such leaks have caused no known environmental or economic problems to date, the leaks may be significant because of the potential for future problems. To mitigate future problems, some repair scenarios are discussed including injection of sealants.
This report describes a new microsystems technology for the creation of microsensors and microelectromechanical systems (MEMS) using stress-free amorphous diamond (aD) films. Stress-free aD is a new material that has mechanical properties close to that of crystalline diamond, and the material is particularly promising for the development of high sensitivity microsensors and rugged and reliable MEMS. Some of the unique properties of aD include the ability to easily tailor film stress from compressive to slightly tensile, hardness and stiffness 80-90% that of crystalline diamond, very high wear resistance, a hydrophobic surface, extreme chemical inertness, chemical compatibility with silicon, controllable electrical conductivity from insulating to conducting, and biocompatibility. A variety of MEMS structures were fabricated from this material and evaluated. These structures included electrostatically-actuated comb drives, micro-tensile test structures, singly- and doubly-clamped beams, and friction and wear test structures. It was found that surface micromachined MEMS could be fabricated in this material easily and that the hydrophobic surface of the film enabled the release of structures without the need for special drying procedures or the use of applied hydrophobic coatings. Measurements using these structures revealed that aD has a Young's modulus of {approx}650 GPa, a tensile fracture strength of 8 GPa, and a fracture toughness of 8 MPa{center_dot}m {sup 1/2}. These results suggest that this material may be suitable in applications where stiction or wear is an issue. Flexural plate wave (FPW) microsensors were also fabricated from aD. These devices use membranes of aD as thin as {approx}100 nm. The performance of the aD FPW sensors was evaluated for the detection of volatile organic compounds using ethyl cellulose as the sensor coating. For comparable membrane thicknesses, the aD sensors showed better performance than silicon nitride based sensors. Greater than one order of magnitude increase in chemical sensitivity is expected through the use of ultra-thin aD membranes in the FPW sensor. The discoveries and development of the aD microsystems technology that were made in this project have led to new research projects in the areas of aD bioMEMS and aD radio frequency MEMS.
Photon radiation transport is described by the Boltzmann equation. Because this equation is difficult to solve, many different approximate forms have been implemented in computer codes. Several of the most common approximations are reviewed, and test problems illustrate the characteristics of each of the approximations. This document is designed as a tutorial so that code users can make an educated choice about which form of approximate radiation transport to use for their particular simulation.