Reversible Hydrogen Storage by Metastable Hydrides in Functionalized Porous Hosts
Abstract not provided.
Abstract not provided.
Journal of Materials Chemistry A
Liquid organic hydrogen carriers such as alcohols and polyols are a high-capacity means of transporting and reversibly storing hydrogen that demands effective catalysts to drive the (de)hydrogenation reactions under mild conditions. We employed a combined theory/experiment approach to develop MOF-74 catalysts for alcohol dehydrogenation and examine the performance of the open metal sites (OMS), which have properties analogous to the active sites in high-performance single-site catalysts and homogeneous catalysts. Methanol dehydrogenation was used as a model reaction system for assessing the performance of five monometallic M-MOF-74 variants (M = Co, Cu, Mg, Mn, Ni). Co-MOF-74 and Ni-MOF-74 give the highest H2 productivity. However, Ni-MOF-74 is unstable under reaction conditions and forms metallic nickel particles. To improve catalyst activity and stability, bimetallic (NixMg1-x)-MOF-74 catalysts were developed that stabilize the Ni OMS and promote the dehydrogenation reaction. An optimal composition exists at (Ni0.32Mg0.68)-MOF-74 that gives the greatest H2 productivity, up to 203 mL gcat-1 min-1 at 300 °C, and maintains 100% selectivity to CO and H2 between 225-275 °C. The optimized catalyst is also active for the dehydrogenation of other alcohols. DFT calculations reveal that synergistic interactions between the open metal site and the organic linker lead to lower reaction barriers in the MOF catalysts compared to the open metal site alone. This work expands the suite of hydrogen-related reactions catalyzed by MOF-74 which includes recent work on hydroformulation and our earlier reports of aryl-ether hydrogenolysis. Moreover, it highlights the use of bimetallic frameworks as an effective strategy for stabilizing a high density of catalytically active open metal sites. This journal is
ACS Materials Letters
Two-dimensional (2D) metal-boride-derived nanostructures have been a focus of intense research for the past decade, with an emphasis on new synthetic approaches, as well as on the exploration of possible applications in next-generation advanced materials and devices. Their unusual mechanical, electronic, optical, and chemical properties, arising from low dimensionality, present a new paradigm to the science of metal borides that has traditionally focused on their bulk properties. This Perspective discusses the current state of research on metal-boride-derived 2D nanostructures, highlights challenges that must be overcome, and identifies future opportunities to fully utilize their potential.
Advanced Materials
In this work, the covalent attachment of an amine functionalized metal-organic framework (UiO-66-NH2 = Zr6O4(OH)4(bdc-NH2)6; bdc-NH2 = 2-amino-1,4-benzenedicarboxylate) (UiO-Universitetet i Oslo) to the basal-plane of carboxylate functionalized graphene (graphene acid = GA) via amide bonds is reported. The resultant GA@UiO-66-NH2 hybrid displayed a large specific surface area, hierarchical pores and an interconnected conductive network. The electrochemical characterizations demonstrated that the hybrid GA@UiO-66-NH2 acts as an effective charge storing material with a capacitance of up to 651 F g−1, significantly higher than traditional graphene-based materials. The results suggest that the amide linkage plays a key role in the formation of a π-conjugated structure, which facilitates charge transfer and consequently offers good capacitance and cycling stability. Furthermore, to realize the practical feasibility, an asymmetric supercapacitor using a GA@UiO-66-NH2 positive electrode with Ti3C2TX MXene as the opposing electrode has been constructed. The cell is able to deliver a power density of up to 16 kW kg−1 and an energy density of up to 73 Wh kg−1, which are comparable to several commercial devices such as Pb-acid and Ni/MH batteries. Under an intermediate level of loading, the device retained 88% of its initial capacitance after 10 000 cycles.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Molecular Systems Design and Engineering
Understanding the fundamental limits of gas deliverable capacity in porous materials is of critical importance as it informs whether technical targets (e.g., for on-board vehicular storage) are feasible. High-throughput screening studies of rigid materials, for example, have shown they are not able to achieve the original ARPA-E methane storage targets, yet an interesting question remains: what is the upper limit of deliverable capacity in flexible materials? In this work we develop a statistical adsorption model that specifically probes the limit of deliverable capacity in intrinsically flexible materials. The resulting adsorption thermodynamics indicate that a perfectly designed, intrinsically flexible nanoporous material could achieve higher methane deliverable capacity than the best benchmark systems known to date with little to no total volume change. Density functional theory and grand canonical Monte Carlo simulations identify a known metal-organic framework (MOF) that validates key features of the model. Therefore, this work (1) motivates a continued, extensive effort to rationally design a porous material analogous to the adsorption model and (2) calls for continued discovery of additional high deliverable capacity materials that remain hidden from rigid structure screening studies due to nominal non-porosity.
International Journal of Hydrogen Energy
The fatigue crack growth behavior of Ti–10V–2Fe–3Al in gaseous hydrogen (H2) was assessed through comparative experiments conducted in laboratory air and 8.3 MPa H2. The measured fatigue crack growth rate (da/dN) versus applied stress intensity factor range (ΔK) relationships and observed fracture morphologies for laboratory air and H2 were comparable up to ΔK ≈ 6.9 MPa√m, when tested at a load ratio of 0.1 and frequency of 10 Hz. At higher ΔK values, significant crack deflection and subsequent catastrophic failure occurred in the specimen tested in H2. This degradation was not observed in a specimen pre-exposed to 8.3 MPa H2 for 96 h and then immediately tested in laboratory air. X-ray diffraction of the failed H2-tested specimen revealed that the material remnants were predominantly composed of TiH2, suggesting that hydride formation was the catalyst for catastrophic failure in H2. The mechanistic implications of these results and their impact on current material compatibility assessments for Ti alloys in hydrogen service are then discussed.
Journal of Physical Chemistry C
Metal borides have attracted the attention of researchers due to their useful physical properties and unique ability to form high hydrogen-capacity metal borohydrides. We demonstrate improved hydrogen storage properties of a nanoscale Mg-B material made by surfactant ball milling MgB2 in a mixture of heptane, oleic acid, and oleylamine. Transmission electron microscopy data show that Mg-B nanoplatelets are produced with sizes ranging from 5 to 50 nm, which agglomerate upon ethanol washing to produce an agglomerated nanoscale Mg-B material of micron-sized particles with some surfactant still remaining. X-ray diffraction measurements reveal a two-component material where 32% of the solid is a strained crystalline solid maintaining the hexagonal structure with the remainder being amorphous. Fourier transform infrared shows that the oleate binds in a "bridge-bonding"fashion preferentially to magnesium rather than boron, which is confirmed by density functional theory calculations. The Mg-B nanoscale material is deficient in boron relative to bulk MgB2 with a Mg-B ratio of ∼1:0.75. The nanoscale MgB0.75 material has a disrupted B-B ring network as indicated by X-ray absorption measurements. Hydrogenation experiments at 700 bar and 280 °C show that it partially hydrogenates at temperatures 100 °C below the threshold for bulk MgB2 hydrogenation. In addition, upon heating to 200 °C, the H-H bond-breaking ability increases ∼10-fold according to hydrogen-deuterium exchange experiments due to desorption of oleate at the surface. This behavior would make the nanoscale Mg-B material useful as an additive where rapid H-H bond breaking is needed.
Abstract not provided.
ACS Nano
The lower limit of metal hydride nanoconfinement is demonstrated through the coordination of a molecular hydride species to binding sites inside the pores of a metal-organic framework (MOF). Magnesium borohydride, which has a high hydrogen capacity, is incorporated into the pores of UiO-67bpy (Zr6O4(OH)4(bpydc)6 with bpydc2- = 2,2′-bipyridine-5,5′-dicarboxylate) by solvent impregnation. The MOF retained its long-range order, and transmission electron microscopy and elemental mapping confirmed the retention of the crystal morphology and revealed a homogeneous distribution of the hydride within the MOF host. Notably, the B-, N-, and Mg-edge XAS data confirm the coordination of Mg(II) to the N atoms of the chelating bipyridine groups. In situ 11B MAS NMR studies helped elucidate the reaction mechanism and revealed that complete hydrogen release from Mg(BH4)2 occurs as low as 200 °C. Sieverts and thermogravimetric measurements indicate an increase in the rate of hydrogen release, with the onset of hydrogen desorption as low as 120 °C, which is approximately 150 °C lower than that of the bulk material. Furthermore, density functional theory calculations support the improved dehydrogenation properties and confirm the drastically lower activation energy for B-H bond dissociation.
Journal of Physical Chemistry C
MCB11H12 (M: Li, Na) dodecahydro-monocarba-closo-dodecaborate salt compounds are known to have stellar superionic Li+ and Na+ conductivities in their high-temperature disordered phases, making them potentially appealing electrolytes in all-solid-state batteries. Nonetheless, it is of keen interest to search for other related materials with similar conductivities while at the same time exhibiting even lower (more device-relevant) disordering temperatures, a key challenge for this class of materials. With this in mind, the unknown structural and dynamical properties of the heavier KCB11H12 congener were investigated in detail by X-ray powder diffraction, differential scanning calorimetry, neutron vibrational spectroscopy, nuclear magnetic resonance, quasielastic neutron scattering, and AC impedance measurements. This salt indeed undergoes an entropy-driven, reversible, order-disorder transformation and with a lower onset temperature (348 K upon heating and 340 K upon cooling) in comparison to the lighter LiCB11H12 and NaCB11H12 analogues. The K+ cations in both the low-T ordered monoclinic (P21/c) and high-T disordered cubic (Fm3¯ m) structures occupy octahedral interstices formed by CB11H12- anions. In the low-T structure, the anions orient themselves so as to avoid close proximity between their highly electropositive C-H vertices and the neighboring K+ cations. In the high-T structure, the anions are orientationally disordered, although to best avoid the K+ cations, the anions likely orient themselves so that their C-H axes are aligned in one of eight possible directions along the body diagonals of the cubic unit cell. Across the transition, anion reorientational jump rates change from 6.2 × 106 s-1 in the low-T phase (332 K) to 2.6 × 1010 s-1 in the high-T phase (341 K). In tandem, K+ conductivity increases by about 30-fold across the transition, yielding a high-T phase value of 3.2 × 10-4 S cm-1 at 361 K. However, this is still about 1 to 2 orders of magnitude lower than that observed for LiCB11H12 and NaCB11H12, suggesting that the relatively larger K+ cation is much more sterically hindered than Li+ and Na+ from diffusing through the anion lattice via the network of smaller interstitial sites.
Abstract not provided.
Chemistry of Materials
The thermodynamic stability and melting point of magnesium borohydride were probed under hydrogen pressures up to 1000 bar (100 MPa) and temperatures up to 400 °C. At 400 °C, Mg(BH4)2 was found to be chemically stable between 700 and 1000 bar H2, whereas under 350 bar H2 or lower pressures, the bulk material partially decomposed into MgH2 and MgB12H12. The melting point of solvent-free Mg(BH4)2 was estimated to be 367-375 °C, which was above previously reported values by 40-90 °C. Our results indicated that a high hydrogen backpressure is needed to prevent the decomposition of Mg(BH4)2 before measuring the melting point and that molten Mg(BH4)2 can exist as a stable liquid phase between 367 and 400 °C under hydrogen overpressures of 700 bar or above. The occurrence of a pure molten Mg(BH4)2 phase enabled efficient melt-infiltration of Mg(BH4)2 into the pores of porous templated carbons (CMK-3 and CMK-8) and graphene aerogels. Both transmission electron microscopy and small-angle X-ray scattering confirmed efficient incorporation of the borohydride into the carbon pores. The Mg(BH4)2@carbon samples exhibited comparable hydrogen capacities to bulk Mg(BH4)2 upon desorption up to 390 °C based on the mass of the active component; the onset of hydrogen release was reduced by 15-25 °C compared to the bulk. Importantly, melt-infiltration under hydrogen pressure was shown to be an efficient way to introduce metal borohydrides into the pores of carbon-based materials, helping to prevent particle agglomeration and formation of stable closo-polyborate byproducts.
Advanced Materials Interfaces
Complex metal hydrides provide high-density hydrogen storage, which is essential for vehicular applications. However, the utility of these materials has been limited by thermodynamic and kinetic barriers present during the dehydrogenation and rehydrogenation processes as new phases form inside parent phases. Better understanding of the mixed-phase mesostructures and their interfaces may assist in improving cyclability. In this work, the evolution of the phases during hydrogenation of lithium nitride and dehydrogenation of lithium amide with lithium hydride are probed with scanning-transmission X-ray microscopy at the nitrogen K edge. With this technique, intriguing core-shell structures were observed in particles of both partially hydrogenated Li3N and partially dehydrogenated LiNH2 + 2 LiH. The potential contributions of both internal hydrogen mobility and interfacial energies on the generation of these structures are discussed.
Advanced Materials Interfaces
Complex metal hydrides provide high-density hydrogen storage, which is essential for vehicular applications. However, the practical application of these materials is limited by thermodynamic and kinetic barriers present during the dehydrogenation and rehydrogenation processes as new phases form inside parent phases. An improved understanding of the mixed-phase mesostructures and their interfaces will assist in improving cyclability. In this work, the phase evolution during hydrogenation of lithium nitride and dehydrogenation of lithium amide with lithium hydride is probed with scanning transmission X-ray microscopy at the nitrogen K edge. With this technique, core–shell structures are observed in particles of both partially hydrogenated Li3N and partially dehydrogenated LiNH2 + 2LiH. To generate these structures, the rate-limiting step must shift from internal hydrogen diffusion during hydrogenation to the formation of hydrogen gas at the surface during desorption.
Abstract not provided.
Abstract not provided.
ACS Nano
Magnesium borohydride (Mg(BH4)2, abbreviated here MBH) has received tremendous attention as a promising onboard hydrogen storage medium due to its excellent gravimetric and volumetric hydrogen storage capacities. While the polymorphs of MBH - alpha (α), beta (β), and gamma (γ) - have distinct properties, their synthetic homogeneity can be difficult to control, mainly due to their structural complexity and similar thermodynamic properties. Here, we describe an effective approach for obtaining pure polymorphic phases of MBH nanomaterials within a reduced graphene oxide support (abbreviated MBHg) under mild conditions (60-190 °C under mild vacuum, 2 Torr), starting from two distinct samples initially dried under Ar and vacuum. Specifically, we selectively synthesize the thermodynamically stable α phase and metastable β phase from the γ-phase within the temperature range of 150-180 °C. The relevant underlying phase evolution mechanism is elucidated by theoretical thermodynamics and kinetic nucleation modeling. The resulting MBHg composites exhibit structural stability, resistance to oxidation, and partially reversible formation of diverse [BH4]- species during de- and rehydrogenation processes, rendering them intriguing candidates for further optimization toward hydrogen storage applications.
Chemistry of Materials
Solid-state ion conductors based on closo-polyborate anions combine high ionic conductivity with a rich array of tunable properties. Cation mobility in these systems is intimately related to the strength of the interaction with the neighboring anionic network and the energy for reorganizing the coordination polyhedra. Here, we explore such factors in solid electrolytes with two anions of the weakest coordinating ability, [HCB11H5Cl6]- and [HCB11H5Br6]-, and a total of 11 polymorphs are identified for their lithium and sodium salts. Our approach combines ab initio molecular dynamics, synchrotron X-ray powder diffraction, differential scanning calorimetry, and AC impedance measurements to investigate their structures, phase-transition behavior, anion orientational mobilities, and ionic conductivities. We find that M(HCB11H5X6) (M = Li, Na, X = Cl, Br) compounds exhibit order-disorder polymorphic transitions between 203 and 305 °C and display Li and Na superionic conductivity in the disordered state. Through detailed analysis, we illustrate how cation disordering in these compounds originates from a competitive interplay among the lattice symmetry, the anion reorientational mobility, the geometric and electronic asymmetry of the anion, and the polarizability of the halogen atoms. These factors are compared to other closo-polyborate-based ion conductors to suggest guidelines for optimizing the cation-anion interaction for fast ion mobility. This study expands the known solid-state poly(carba)borate-based materials capable of liquid-like ionic conductivities, unravels the mechanisms responsible for fast ion transport, and provides insights into the development of practical superionic solid electrolytes.
Abstract not provided.
Abstract not provided.
Journal of Physical Chemistry Letters
An open question in the metal hydride community is whether there are simple, physics-based design rules that dictate the thermodynamic properties of these materials across the variety of structures and chemistry they can exhibit. While black box machine learning-based algorithms can predict these properties with some success, they do not directly provide the basis on which these predictions are made, therefore complicating the a priori design of novel materials exhibiting a desired property value. In this work we demonstrate how feature importance, as identified by a gradient boosting tree regressor, uncovers the strong dependence of the metal hydride equilibrium H2 pressure on a volume-based descriptor that can be computed from just the elemental composition of the intermetallic alloy. Elucidation of this simple structure-property relationship is valid across a range of compositions, metal substitutions, and structural classes exhibited by intermetallic hydrides. This permits rational targeting of novel intermetallics for high-pressure hydrogen storage (low-stability hydrides) by their descriptor values, and we predict a known intermetallic to form a low-stability hydride (as confirmed by density functional theory calculations) that has not yet been experimentally investigated.
Abstract not provided.
Biotechnology for Biofuels
Background: Lignocellulosic biomass is recognized as a promising renewable feedstock for the production of biofuels. However, current methods for converting biomass into fermentable sugars are considered too expensive and inefficient due to the recalcitrance of the secondary cell wall. Biomass composition can be modified to create varieties that are efficiently broken down to release cell wall sugars. This study focused on identifying the key biomass components influencing plant cell wall recalcitrance that can be targeted for selection in sugarcane, an important and abundant source of biomass. Results: Biomass composition and the amount of glucan converted into glucose after saccharification were measured in leaf and culm tissues from seven sugarcane genotypes varying in fiber composition after no pretreatment and dilute acid, hydrothermal and ionic liquid pretreatments. In extractives-free sugarcane leaf and culm tissue, glucan, xylan, acid-insoluble lignin (AIL) and acid-soluble lignin (ASL) ranged from 20 to 32%, 15% to 21%, 14% to 20% and 2% to 4%, respectively. The ratio of syringyl (S) to guaiacyl (G) content in the lignin ranged from 1.5 to 2.2 in the culm and from 0.65 to 1.1 in the leaf. Hydrothermal and dilute acid pretreatments predominantly reduced xylan content, while the ionic liquid (IL) pretreatment targeted AIL reduction. The amount of glucan converted into glucose after 26 h of pre-saccharification was highest after IL pretreatment (42% in culm and 63.5% in leaf) compared to the other pretreatments. Additionally, glucan conversion in leaf tissues was approximately 1.5-fold of that in culm tissues. Percent glucan conversion varied between genotypes but there was no genotype that was superior to all others across the pretreatment groups. Path analysis revealed that S/G ratio, AIL and xylan had the strongest negative associations with percent glucan conversion, while ASL and glucan content had strong positive influences. Conclusion: To improve saccharification efficiency of lignocellulosic biomass, breeders should focus on reducing S/G ratio, xylan and AIL content and increasing ASL and glucan content. This will be key for the development of sugarcane varieties for bioenergy uses.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Fusion Engineering and Design
The authors exposed a radiatively cooled, Li-filled tantalum (Ta) heat pipe (HP) to a H plasma in Magnum PSI continuously for ˜2 h. We kept the overall heat load on the inclined HP constant and varied the tilt to give peak heat fluxes of ˜7.5–13 MW/m2. The peak temperature reached ˜1250 °C. This paper describes the post-test analysis and discusses Li HPs with materials other than Ta for fusion. A companion paper describes the experiment.
ChemPhysChem
In order to determine a material's hydrogen storage potential, capacity measurements must be robust, reproducible, and accurate. Commonly, research reports focus on the gravimetric capacity, and often times the volumetric capacity is not reported. Determining volumetric capacities is not as straight-forward, especially for amorphous materials. This is the first study to compare measurement reproducibility across laboratories for excess and total volumetric hydrogen sorption capacities based on the packing volume. The use of consistent measurement protocols, common analysis, and figure of merits for reporting data in this study, enable the comparison of the results for two different materials. Importantly, the results show good agreement for excess gravimetric capacities amongst the laboratories. Irreproducibility for excess and total volumetric capacities is attributed to real differences in the measured packing volume of the material.
Abstract not provided.
ChemPhysChem
Magnesium-based materials provide some of the highest capacities for solid-state hydrogen storage. However, efforts to improve their performance rely on a comprehensive understanding of thermodynamic and kinetic limitations at various stages of (de)hydrogenation. Part of the complexity arises from the fact that unlike interstitial metal hydrides that retain the same crystal structures of the underlying metals, MgH 2 and other magnesium-based hydrides typically undergo dehydrogenation reactions that are coupled to a structural phase transformation. As a first step towards enabling molecular dynamics studies of thermodynamics, kinetics, and (de)hydrogenation mechanisms of Mg-based solid-state hydrogen storage materials with changing crystal structures, we have developed an analytical bond order potential for Mg−H systems. We demonstrate that our potential accurately reproduces property trends of a variety of elemental and compound configurations with different coordinations, including small clusters and bulk lattices. More importantly, we show that our potential captures the relevant (de)hydrogenation chemical reactions 2H (gas)→H 2 (gas) and 2H (gas)+Mg (hcp)→MgH 2 (rutile) within molecular dynamics simulations. This verifies that our potential correctly prescribes the lowest Gibbs free energies to the equilibrium H 2 and MgH 2 phases as compared to other configurations. It also indicates that our molecular dynamics methods can directly reveal atomic processes of (de)hydrogenation of the Mg−H systems.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
ChemPhysChem
Here in this article, the capabilities of soft and hard X-ray techniques, including X-ray absorption (XAS), soft X-ray emission spectroscopy (XES), resonant inelastic soft X-ray scattering (RIXS), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD), and their application to solid-state hydrogen storage materials are presented. These characterization tools are indispensable for interrogating hydrogen storage materials at the relevant length scales of fundamental interest, which range from the micron scale to nanometer dimensions.Since nanostructuring is now well established as an avenue to improve the thermodynamics and kinetics of hydrogen release and uptake, due to properties such as reduced mean free paths of transport and increased surface-to-volume ratio, it becomes of critical importance to explicitly identify structure-property relationships on the nanometer scale. X-ray diffraction and spectroscopy are effective tools for probing size-, shape-, and structure-dependent material properties at the nanoscale. This article also discusses the recent development of in-situ soft X-ray spectroscopy cells, which enable investigation of critical solid/liquid or solid/gas interfaces under more practical conditions. These unique tools are providing a window into the thermodynamics and kinetics of hydrogenation and dehydrogenation reactions and informing a quantitative understanding of the fundamental energetics of hydrogen storage processes at the microscopic level. In particular, in-situ soft X-ray spectroscopies can be utilized to probe the formation of intermediate species, byproducts, as well as the changes in morphology and effect of additives, which all can greatly affect the hydrogen storage capacity, kinetics, thermodynamics, and reversibility.A few examples using soft X-ray spectroscopies to study these materials are discussed to demonstrate how these powerful characterization tools could be helpful to further understand the hydrogen storage systems.
ACS Applied Materials and Interfaces
Solid-state metal hydrides are prime candidates to replace compressed hydrogen for fuel cell vehicles due to their high volumetric capacities. Sodium aluminum hydride has long been studied as an archetype for higher-capacity metal hydrides, with improved reversibility demonstrated through the addition of titanium catalysts; however, atomistic mechanisms for surface processes, including hydrogen desorption, are still uncertain. Here, operando and ex situ measurements from a suite of diagnostic tools probing multiple length scales are combined with ab initio simulations to provide a detailed and unbiased view of the evolution of the surface chemistry during hydrogen release. In contrast to some previously proposed mechanisms, the titanium dopant does not directly facilitate desorption at the surface. Instead, oxidized surface species, even on well-protected NaAlH 4 samples, evolve during dehydrogenation to form surface hydroxides with differing levels of hydrogen saturation. Additionally, the presence of these oxidized species leads to considerably lower computed barriers for H 2 formation compared to pristine hydride surfaces, suggesting that oxygen may actively participate in hydrogen release, rather than merely inhibiting diffusion as is commonly presumed. These results demonstrate how close experiment-theory feedback can elucidate mechanistic understanding of complex metal hydride chemistry and potentially impactful roles of unavoidable surface impurities.
Abstract not provided.
ACS Applied Materials and Interfaces
Solid-state metal hydrides are prime candidates to replace compressed hydrogen for fuel cell vehicles due to their high volumetric capacities. Sodium aluminum hydride has long been studied as an archetype for higher-capacity metal hydrides, with improved reversibility demonstrated through the addition of titanium catalysts; however, atomistic mechanisms for surface processes, including hydrogen desorption, are still uncertain. Here in this paper, operando and ex situ measurements from a suite of diagnostic tools probing multiple length scales are combined with ab initio simulations to provide a detailed and unbiased view of the evolution of the surface chemistry during hydrogen release. In contrast to some previously proposed mechanisms, the titanium dopant does not directly facilitate desorption at the surface. Instead, oxidized surface species, even on well-protected NaAlH4 samples, evolve during dehydrogenation to form surface hydroxides with differing levels of hydrogen saturation. Additionally, the presence of these oxidized species leads to considerably lower computed barriers for H2 formation compared to pristine hydride surfaces, suggesting that oxygen may actively participate in hydrogen release, rather than merely inhibiting diffusion as is commonly presumed. These results demonstrate how close experiment–theory feedback can elucidate mechanistic understanding of complex metal hydride chemistry and potentially impactful roles of unavoidable surface impurities.
Abstract not provided.
Journal of Physical Chemistry C
Use of electrolytes, in the form of LiBH4/KBH4 and LiI/KI/CsI eutectics, is shown to significantly improve (by more than a factor of 10) both the dehydrogenation and full rehydrogenation of the MgH2/Sn destabilized hydride system and the hydrogenation of MgB2 to Mg(BH4)2. The improvement revealed that interparticle transport of atoms heavier than hydrogen can be an important rate-limiting step during hydrogen cycling in hydrogen storage materials consisting of multiple phases in powder form. Electrolytes enable solubilizing heavy ions into a liquid environment and thereby facilitate the reaction over full surface areas of interacting particles. The examples presented suggest that use of electrolytes in the form of eutectics, ionic liquids, or solvents containing dissolved salts may be generally applicable for increasing reaction rates in complex and destabilized hydride materials.
Chemical Reviews
Knowledge and foundational understanding of phenomena associated with the behavior of materials at the nanoscale is one of the key scientific challenges toward a sustainable energy future. Size reduction from bulk to the nanoscale leads to a variety of exciting and anomalous phenomena due to enhanced surface-to-volume ratio, reduced transport length, and tunable nanointerfaces. Nanostructured metal hydrides are an important class of materials with significant potential for energy storage applications. Hydrogen storage in nanoscale metal hydrides has been recognized as a potentially transformative technology, and the field is now growing steadily due to the ability to tune the material properties more independently and drastically compared to those of their bulk counterparts. The numerous advantages of nanostructured metal hydrides compared to bulk include improved reversibility, altered heats of hydrogen absorption/desorption, nanointerfacial reaction pathways with faster rates, and new surface states capable of activating chemical bonds. This review aims to summarize the progress to date in the area of nanostructured metal hydrides and intends to understand and explain the underpinnings of the innovative concepts and strategies developed over the past decade to tune the thermodynamics and kinetics of hydrogen storage reactions. These recent achievements have the potential to propel further the prospects of tuning the hydride properties at nanoscale, with several promising directions and strategies that could lead to the next generation of solid-state materials for hydrogen storage applications.
ACS Applied Materials and Interfaces
HKUST-1 or Cu3BTC2 (BTC = 1,3,5-benzenetricarboxylate) is a prototypical metal-organic framework (MOF) that holds a privileged position among MOFs for device applications, as it can be deposited as thin films on various substrates and surfaces. Recently, new potential applications in electronics have emerged for this material when HKUST-1 was demonstrated to become electrically conductive upon infiltration with 7,7,8,8-tetracyanoquinodimethane (TCNQ). However, the factors that control the morphology and reactivity of the thin films are unknown. Here, we present a study of the thin-film growth process on indium tin oxide and amorphous Si prior to infiltration. From the unusual bimodal, non-log-normal distribution of crystal domain sizes, we conclude that the nucleation of new layers of Cu3BTC2 is greatly enhanced by surface defects and thus difficult to control. We then show that these films can react with methanolic TCNQ solutions to form dense films of the coordination polymer Cu(TCNQ). This chemical conversion is accompanied by dramatic changes in surface morphology, from a surface dominated by truncated octahedra to randomly oriented thin platelets. The change in morphology suggests that the chemical reaction occurs in the liquid phase and is independent of the starting surface morphology. The chemical transformation is accompanied by 10 orders of magnitude change in electrical conductivity, from <10-11 S/cm for the parent Cu3BTC2 material to 10-1 S/cm for the resulting Cu(TCNQ) film. The conversion of Cu3BTC2 films, which can be grown and patterned on a variety of (nonplanar) substrates, to Cu(TCNQ) opens the door for the facile fabrication of more complex electronic devices.
Abstract not provided.
Energy and Environmental Science
Nanoporous adsorbents are a diverse category of solid-state materials that hold considerable promise for vehicular hydrogen storage. Although impressive storage capacities have been demonstrated for several materials, particularly at cryogenic temperatures, materials meeting all of the targets established by the U.S. Department of Energy have yet to be identified. In this Perspective, we provide an overview of the major known and proposed strategies for hydrogen adsorbents, with the aim of guiding ongoing research as well as future new storage concepts. The discussion of each strategy includes current relevant literature, strengths and weaknesses, and outstanding challenges that preclude implementation. We consider in particular metal-organic frameworks (MOFs), including surface area/volume tailoring, open metal sites, and the binding of multiple H2 molecules to a single metal site. Two related classes of porous framework materials, covalent organic frameworks (COFs) and porous aromatic frameworks (PAFs), are also discussed, as are graphene and graphene oxide and doped porous carbons. We additionally introduce criteria for evaluating the merits of a particular materials design strategy. Computation has become an important tool in the discovery of new storage materials, and a brief introduction to the benefits and limitations of computational predictions of H2 physisorption is therefore presented. Finally, considerations for the synthesis and characterization of hydrogen storage adsorbents are discussed.
Abstract not provided.