The work for Step 1 performed at Sandia National Laboratories and reported in Section 7 has been updated to incorporate new data and to conduct new simulations using a new larger base case domain. The new simulations also include statistical analysis for different fracture realizations. A sensitivity analysis was also conducted to the study of the effect of domain size. A much larger mesh was selected to minimize boundary effects. The DFN model was upscaled to the new base case domain and the much larger domain to generate relevant permeability and porosity fields for each case. The calculations updated for Step 2 are described in Section 12.1. New calculations have also been conducted to model the flooding of the CTD and the resulting pressure recovery. The modeling includes matching of pressure and chloride experimental data at the six observation locations in Well 12M133. The modeling was done for the 10 fracture realizations. The Step 2 recovery simulations are described in Section 12.2. The Step 2 work is summarized in Section 12.3.
The following interim report describes updates to ongoing international collaboration activities pertaining the FEBEX-DP and DECOVALEX Task C projects. Descriptions of these underground research laboratory (URL) activities are given in Jové Coke et al. (2018) but will repeated here for completeness. The 2018 status of work conducted at Sandia National Laboratories (SNL) on these two activities has been described in Jové Coke et al. (2018) and were summarized along with other international collaboration activities in Birkholzer et al. (2018).
Sandia National Laboratories (SNL) continued evaluation of total system performance assessment (TSPA) computing systems for the previously considered Yucca Mountain Project (YMP). This was done to maintain the operational readiness of the computing infrastructure (computer hardware and software) and knowledge capability for total system performance assessment (TSPA) type analysis, as directed by the National Nuclear Security Administration (NNSA), DOE 2010. This work is a continuation of the ongoing readiness evaluation reported in Lee and Hadgu (2014), Hadgu et al. (2015) and Hadgu and Appel (2016), and Hadgu et al. (2017). The TSPA computing hardware (2014 server cluster -CL2014) and storage system described in Hadgu et al. (2015) were used for the current analysis. One floating license of Gold Sim with Versions 9.60.300, 10.5, 11.1 and 12.0 was installed on the cluster head node, and its distributed processing capability was mapped on the cluster processors. Other supporting software were tested and installed to support the TSPA-type analysis on the server cluster. The FY18 task included developing an inventory of software used for the Yucca Mountain Project process models and preliminary assessment of status of the software; enhancing security of the cluster and setting a backup system. The 2014 server cluster and supporting software systems are fully operational to support TSPA-LA type analysis.
This document is a summary of the R&D activities associated with the Engineered Barrier Systems Work Package. Multiple facets of Engineered Barrier Systems (EBS) research were examined in the course of FY18 activities. This report is focused on delivering an update on the status and progress of modelling tools and experimental methods, both of which are essential to understanding and predicting long-term repository performance as part of the safety case. Specifically, the work described herein aims to improve understanding of EBS component evolution and interactions. Utlimately, the EBS Work Package is working towards producing process models for distinct processes that can either be incorporated into performance assessment (PA), or provide critical information for implementing better constraints on barrier performance The main objective of this work is that the models being developed and refined will either be implemented directly into the Generic Disposal System Analysis platform (GDSA), or can otherwise be indirectly linked to the performance assessment by providing improved bounding conditions. In either the case, the expectation is that validated modelling tools will be developed that provide critical input to the safety case. This report covers a range of topics — modelling topics include: thermal-hydrologic-mechanical-chemical coupling (THMC) in buffer materials, comparisons of modelling approaches to optimize computational efficiency, thermal analysis for EBS/repository design, benchmarking of thermal analysis tools, and a preliminary study of buffer re-saturation processes. Experimental work reported, includes: chemical evolution and sorption behavior of clay-based buffer materials and high-pressure, high temperature studies of EBS material interactions. The work leverages international collaborations to ensure that the DOE program is active and abreast of the latest advances in nuclear waste disposal. This includes participation in the HotBENT Field Test, aimed at understanding near-field effects on EBS materials at temperatures above 100 °C, and the analysis of data and characterization of samples from the FEBEX Field Test. Both the FEBEX and HotBENT Field Tests utilize/utilized the Grimsel Test Site in Switzerland, which is situated in a granite host rock. These tests offer the opportunity to understand near field evolution of bentonite buffer at in situ conditions for either a relatively long timescale (18 years for FEBEX) or temperature above 100 °C (HotBENT). Overall, this report provides in depth descriptions of tools and capabilities to investigate nearfield performance of EBS materials (esp. bentonite buffer), as well as tools for drift-scale thermal and thermal-hydrologic analysis critical to EBS and repository design. For a more detailed description of work contained herein, please see Section 10 ("Conclusions") of this document.
The SNL Engineered Barrier System (EBS) International activities were focused on two main collaborative efforts for FY18: 1) Benchmarking semi-analytical codes used for thermal analysis, and 2) Benchmarking of reactive transport codes (including PFLOTRAN) used for chemical evolution of cementitious EBS components. The former topic, was completed over the course of FY18, while the latter has just begun in the latter half of FY18 under the aegis of additional appropriations and scoped as "Additional FY18 Activities". This report contains a complete summary of Item #1, as well as a status update on the progress of Item #2.
U.S. knowledge in deep geologic disposal in crystalline rock is advanced and growing. U.S. status and recent advances related to crystalline rock are discussed throughout this report. Brief discussions of the history of U.S. disposal R&D and the accumulating U.S. waste inventory are presented in Sections 3.x.2 and 3.x.3. The U.S. repository concept for crystalline rock is presented in Section 3.x.4. In Chapters 4 and 5, relevant U.S. research related to site characterization and repository safety functions are discussed. U.S. capabilities for modelling fractured crystalline rock and performing probabilistic total system performance assessments are presented in Chapter 6.