Publications

Results 76–100 of 153

Search results

Jump to search filters

Roadmap for disposal of Electrorefiner Salt as Transuranic Waste

Rechard, Robert P.; Trone, Janis R.; Kalinina, Elena A.; Wang, Yifeng; Hadgu, Teklu H.; Sanchez, Lawrence C.

The experimental breeder reactor (EBR-II) used fuel with a layer of sodium surrounding the uranium-zirconium fuel to improve heat transfer. Disposing of EBR-II fuel in a geologic repository without treatment is not prudent because of the potentially energetic reaction of the sodium with water. In 2000, the US Department of Energy (DOE) decided to treat the sodium-bonded fuel with an electrorefiner (ER), which produces metallic uranium product, a metallic waste, mostly from the cladding, and the salt waste in the ER, which contains most of the actinides and fission products. Two waste forms were proposed for disposal in a mined repository; the metallic waste, which was to be cast into ingots, and the ER salt waste, which was to be further treated to produce a ceramic waste form. However, alternative disposal pathways for metallic and salt waste streams may reduce the complexity. For example, performance assessments show that geologic repositories can easily accommodate the ER salt waste without treating it to form a ceramic waste form. Because EBR-II was used for atomic energy defense activities, the treated waste likely meets the definition of transuranic waste. Hence, disposal at the Waste Isolation Pilot Plant (WIPP) in southern New Mexico, may be feasible. This report reviews the direct disposal pathway for ER salt waste and describes eleven tasks necessary for implementing disposal at WIPP, provided space is available, DOE decides to use this alternative disposal pathway in an updated environmental impact statement, and the State of New Mexico grants permission.

More Details

FY17 Status Report on the Computing Systems for the Yucca Mountain Project TSPA-LA Models

Appel, Gordon J.; Hadgu, Teklu H.; Reynolds, John T.; Garland, Jason P.

Sandia National Laboratories (SNL) continued evaluation of total system performance assessment (TSPA) computing systems for the previously considered Yucca Mountain Project (YMP). This was done to maintain the operational readiness of the computing infrastructure (computer hardware and software) and knowledge capability for total system performance assessment (TSPA) type analysis, as directed by the National Nuclear Security Administration (NNSA), DOE 2010. This work is a continuation of the ongoing readiness evaluation reported in Lee and Hadgu (2014), Hadgu et al. (2015) and Hadgu and Appel (2016). The TSPA computing hardware (CL2014) and storage system described in Hadgu et al. (2015) were used for the current analysis. One floating license of GoldSim with Versions 9.60.300, 10.5, 11.1 and 12.0 was installed on the cluster head node, and its distributed processing capability was mapped on the cluster processors. Other supporting software were tested and installed to support the TSPA- type analysis on the server cluster. The current tasks included preliminary upgrade of the TSPA-LA from Version 9.60.300 to the latest version 12.0 and address DLL-related issues observed in the FY16 work. The model upgrade task successfully converted the Nominal Modeling case to GoldSim Versions 11.1/12. Conversions of the rest of the TSPA models were also attempted but program and operational difficulties precluded this. Upgrade of the remaining of the modeling cases and distributed processing tasks is expected to continue. The 2014 server cluster and supporting software systems are fully operational to support TSPA-LA type analysis.

More Details

A comparative study of discrete fracture network and equivalent continuum models for simulating flow and transport in the far field of a hypothetical nuclear waste repository in crystalline host rock

Journal of Hydrology

Hadgu, Teklu H.; Karra, Satish; Kalinina, Elena A.; Makedonska, Nataliia; Hyman, Jeffrey D.; Klise, Katherine A.; Viswanathan, Hari S.; Wang, Yifeng

One of the major challenges of simulating flow and transport in the far field of a geologic repository in crystalline host rock is related to reproducing the properties of the fracture network over the large volume of rock with sparse fracture characterization data. Various approaches have been developed to simulate flow and transport through the fractured rock. The approaches can be broadly divided into Discrete Fracture Network (DFN) and Equivalent Continuum Model (ECM). The DFN explicitly represents individual fractures, while the ECM uses fracture properties to determine equivalent continuum parameters. We compare DFN and ECM in terms of upscaled observed transport properties through generic fracture networks. The major effort was directed on making the DFN and ECM approaches similar in their conceptual representations. This allows for separating differences related to the interpretation of the test conditions and parameters from the differences between the DFN and ECM approaches. The two models are compared using a benchmark test problem that is constructed to represent the far field (1 × 1 × 1 km3) of a hypothetical repository in fractured crystalline rock. The test problem setting uses generic fracture properties that can be expected in crystalline rocks. The models are compared in terms of the: 1) effective permeability of the domain, and 2) nonreactive solute breakthrough curves through the domain. The principal differences between the models are mesh size, network connectivity, matrix diffusion and anisotropy. We demonstrate how these differences affect the flow and transport. We identify the factors that should be taken in consideration when selecting an approach most suitable for the site-specific conditions.

More Details

Evaluation of Used Fuel Disposition in Clay-Bearing Rock

Jove Colon, Carlos F.; Wang, Yifeng; Hadgu, Teklu H.; Zheng, Liange; Rutqvist, Jonny; Xu, Hao; Kim, Kunhwi; Voltolini, Marco; Cao, Xiaoyuan; Fox, Patricia; Nico, Peter S.; Caporuscio, Florie A.; Norskog, Katherine E.; Zavarin, Mavrik; Wolery, Thomas J.; Atkins-Duffin, Cindy; Jerden, James; Gattu, Vineeth K.; Ebert, William; Buck, Edgar C.; Wittman, Richard S.

The DOE R&D program under the Spent Fuel Waste Science Technology (SFWST) campaign has made key advances in experimental and modeling aspects of chemical and physical phenomena towards the long-term safety assessment of nuclear waste disposition in deep clay/shale/argillaceous rock. Experimental activities on clay barrier interactions with fluids and radionuclides provide the much needed knowledge to evaluate engineered barrier system (EBS) performance. Thermal-Hydrological-Mechanical-Chemical (THMC) model development of clay provides a rigorous simulation platform to assess the complex dynamic behavior of engineered and natural barrier materials in response to coupled process phenomena induced by heat-generating nuclear waste. This report describes the ongoing disposal R&D efforts on the advancement and refinement of coupled THMC process models, hydrothermal experiments and geochemical modeling of on barrier material (clay/metal) interactions, spent fuel and canister material degradation, radiolytic phenomena and UO2 degradation, and thermodynamic database development. These play an important role to the evaluation of sacrificial zones as part of the EBS exposure to thermally-driven chemical and transport processes. Clay-zeolite phase equilibria play a key role in the mineralogical transformations of clay barrier conducive to loss in swelling properties but also in controlling H20 uptake/release through hydration/dehydration reactions. The result is volume changes can affect the interface / bulk phase porosities, transport, and the mechanical (stress) state of the bentonite barrier. Characterization studies on barrier samples (bentonite/cement) from controlled tests at underground research laboratories (URLs) provide key insights into barrier materials interactions at EBS interfaces. Spent fuel degradation modeling coupled with canister and cladding corrosion effects demonstrate the strong influence of H2 generation on the source term.

More Details

Status Report on Laboratory Testing and International Collaborations in Salt

Kuhlman, Kristopher L.; Matteo, Edward N.; Hadgu, Teklu H.; Reedlunn, Benjamin R.; Sobolik, Steven R.; Mills, Melissa M.; Kirkes, Leslie D.; Xiong, Yongliang X.; Icenhower, Jonathan I.

This report is a summary of the international collaboration and laboratory work funded by the US Department of Energy Office of Nuclear Energy Spent Fuel and Waste Science & Technology (SFWST) as part of the Sandia National Laboratories Salt R&D work package. This report satisfies milestone levelfour milestone M4SF-17SN010303014. Several stand-alone sections make up this summary report, each completed by the participants. The first two sections discuss international collaborations on geomechanical benchmarking exercises (WEIMOS) and bedded salt investigations (KOSINA), while the last three sections discuss laboratory work conducted on brucite solubility in brine, dissolution of borosilicate glass into brine, and partitioning of fission products into salt phases.

More Details

Technical Feasibility of Direct Disposal of Electrorefiner Salt Waste

Rechard, Robert P.; Hadgu, Teklu H.; Wang, Yifeng; Sanchez, Lawrence C.; Mcdaniel, Patrick; Skinner, Corey; Fathi, Nima

The experimental breeder reactor (EBR-II) used fuel with a layer of sodium surrounding the uranium-zirconium fuel to improve heat transfer. Disposing of this EBR-II used fuel in a geologic repository without treatment is not prudent because of the potentially energetic reaction of the sodium with water. In 2000, the US Department of Energy decided to treat the EBR-II sodium-bonded used fuel in an electrorefiner (ER), which produces a metallic waste, mostly from the cladding. The salt remaining in the ER contains most of the actinides and fission products. Two baseline waste forms were proposed for disposal in a mined repository; the metallic waste, which was to be cast into ingots, and the ER salt waste, which was to be further treated to produce a ceramic waste form. However, alternative disposal pathways for metallic and salt waste streams are being investigated that may reduce the complexity. For example, performance assessments show that both mined repositories in salt and deep boreholes in basement crystalline rock can easily accommodate the ER salt waste without treating it to form a ceramic waste form. Hence the focus of a direct disposal option, as described herein, is now on the feasibility of packaging the ER salt waste in the near term such that it can be transported to a repository in the future without repackaging. A vessel for direct disposal of ER salt waste has been previously proposed, designed, and a prototype manufactured based on desirable features for use in the hot cell. The reported analysis focused on the feasibility of transporting this proposed vessel and whether any issues would suggest that a smaller or larger size is more appropriate. Specifically, three issues are addressed (1) shielding necessary to reduce doses to acceptable levels; (2) the criticality potential and the ease which it can be shown to be inconsequential, and (3) temperatures of the containers in relation to acceptable cask limits. The generally positive results demonstrate that direct disposal of ER in the proposed packaging is feasible without the need to secure funding to modify the facility.

More Details

Thermal Analysis of Disposal of High-Level Nuclear Waste in a Generic Bedded Salt repository using the Semi-Analytical Method

Hadgu, Teklu H.; Matteo, Edward N.

An example case is presented for testing analytical thermal models. The example case represents thermal analysis of a generic repository in bedded salt at 500 m depth. The analysis is part of the study reported in Matteo et al. (2016). Ambient average ground surface temperature of 15°C, and a natural geothermal gradient of 25°C/km, were assumed to calculate temperature at the near field. For generic salt repository concept crushed salt backfill is assumed. For the semi-analytical analysis crushed salt thermal conductivity of 0.57 W/m-K was used. With time the crushed salt is expected to consolidate into intact salt. In this study a backfill thermal conductivity of 3.2 W/m-K (same as intact) is used for sensitivity analysis. Decay heat data for SRS glass is given in Table 1. The rest of the parameter values are shown below. Results of peak temperatures at the waste package surface are given in Table 2.

More Details

Cloud Computing for Complex Performance Codes

Appel, Gordon J.; Hadgu, Teklu H.; Klein, Brandon T.; Miner, John G.

This report describes the use of cloud computing services for running complex public domain performance assessment problems. The work consisted of two phases: Phase 1 was to demonstrate complex codes, on several differently configured servers, could run and compute trivial small scale problems in a commercial cloud infrastructure. Phase 2 focused on proving non-trivial large scale problems could be computed in the commercial cloud environment. The cloud computing effort was successfully applied using codes of interest to the geohydrology and nuclear waste disposal modeling community.

More Details

Numeruical modeling of flow and transport in fractured crystalline rock

ANS IHLRWM 2017 - 16th International High-Level Radioactive Waste Management Conference: Creating a Safe and Secure Energy Future for Generations to Come - Driving Toward Long-Term Storage and Disposal

Hadgu, Teklu H.; Kalinina, Elena A.; Klise, Katherine A.; Wang, Yifeng

Disposal of high-level radioactive waste in a deep geological repository in crystalline host rock is one of the potential options for long term isolation. Characterization of the natural barrier system is an important component of the disposal option. In this study we present numerical modeling of flow and transport in fractured crystalline rock using an updated fracture continuum model (FCM). The FCM is a stochastic method that maps the permeability of discrete fractures onto a regular grid. The original method [1] has been updated to provide capabilities that enhance representation of fractured rock. A companion paper [2] provides details of the methods for generating fracture network. In this paper use of the fracture model for the simulation of flow and transport is presented. Simulations were conducted to estimate flow and transport using an enhanced FCM method. Distributions of fracture parameters were used to generate a selected number of realizations. For each realization FCM produced permeability and porosity fields. The PFLOTRAN code [3] was used to simulate flow and transport. Simulation results and analysis are presented. The results indicate that the FCM approach is a viable method to model fractured crystalline rocks. The FCM is a computationally efficient way to generate realistic representation of complex fracture systems. This approach is of interest to nuclear waste disposal modeling applied over large domains.

More Details
Results 76–100 of 153
Results 76–100 of 153