Publications

Results 126–150 of 347

Search results

Jump to search filters

Investigation of Selective Capture and Detection of Specific Fission Gases

Nenoff, T.M.

This proposal is focused on the multidisciplinary, exploratory study of highly selective materials for distinguishing peaceful nuclear facilities from clandestine nuclear weapons development. In particular, we are focused on iodine fission off-gas species. This is a 1-year project; herein is the final FY1 8 report on the project. The project was divided into four Tasks: speciation, flowsheets, fission gas adsorption materials, and detection devices. We successfully addressed all four tasks and reported on them during this year's quarterly reports. This final report will serve as a summary of the accomplishments.

More Details

Nanoparticle Alloy Formation by Radiolysis

Journal of Physical Chemistry. C

Grand, Julien; Ferreira, Summer R.; De Waele, Vincent; Mintova, Svetlana; Nenoff, T.M.

Here, this Review Article focuses on the highly versatile and effective method of radiolysis for the synthesis of nanoparticles (NPs). In particular, the formation of bimetallic and alloyed nanoparticles (or nanoalloys), including both known super alloys and novel alloy NP compositions, is described. This Review Article discloses the synthesis techniques that rely on ionizing radiation sources to create metallic NPs. Then, alloy NPs formed from combinations of transition metals and noble metals with varied structures are described. Some of the advantages of radiolysis including exquisite control over the size, monodispersity, and alloying structure of NPs are discussed. Additionally, methodologies that facilitate the synthesis or deposition of NPs onto a range of supports under inert environments are described. Finally, applications of metallic NPs formed by radiolysis are summarized.

More Details

Direct Electrical Detection of Iodine Gas by a Novel Metal-Organic-Framework-Based Sensor

ACS Applied Materials and Interfaces

Nenoff, T.M.; Small, Leo J.

High-fidelity detection of iodine species is of utmost importance to the safety of the population in cases of nuclear accidents or advanced nuclear fuel reprocessing. Herein, we describe the success at using impedance spectroscopy to directly detect the real-time adsorption of I2 by a metal-organic framework zeolitic imidazolate framework (ZIF)-8-based sensor. Methanolic suspensions of ZIF-8 were dropcast onto platinum interdigitated electrodes, dried, and exposed to gaseous I2 at 25, 40, or 70 °C. Using an unoptimized sensor geometry, I2 was readily detected at 25 °C in air within 720 s of exposure. The specific response is attributed to the chemical selectivity of the ZIF-8 toward I2. Furthermore, equivalent circuit modeling of the impedance data indicates a >105× decrease in ZIF-8 resistance when 116 wt % I2 is adsorbed by ZIF-8 at 70 °C in air. This irreversible decrease in resistance is accompanied by an irreversible loss in the long-range crystallinity, as evidenced by X-ray diffraction and infrared spectroscopy. Air, argon, methanol, and water were found to produce minimal changes in ZIF-8 impedance. This report demonstrates how selective I2 adsorption by ZIF-8 can be leveraged to create a highly selective sensor using >105× changes in impedance response to enable the direct electrical detection of environmentally relevant gaseous toxins.

More Details

Exceptional selectivity for dissolved silicas in industrial waters using mixed oxides

Journal of Water Process Engineering

Sasan, Koroush S.; Brady, Patrick V.; Krumhansl, James L.; Nenoff, T.M.

The removal of silica, ubiquitous in produced and industrial waters, by novel mixed oxides is investigated in this present study. We have combined the advantage of high selectivity hydrotalcite (HTC, (Mg6Al2(OH)16(CO3)·4H2O)), with large surface area of active alumina (AA, (Al2O3)) for effective removing of the dissolved silica from cooling tower water. The batch test results indicated the combined HTC/AA is a more effective method for removing silica from CTW than using each of HTC or AA separately. The silica uptake was confirmed by Fourier transform infrared (FTIR), and Energy dispersive spectroscopy (EDS). Results indicate HTC/AA effectively removes silica from cooling tower water (CTW), even in the presence of large concentrations of competing anions, such as Cl−, NO3− HCO3−, CO32− and SO42−. The Single Path Flow Through (SPFT) tests confirmed to rapid uptake of silica by combined HTC/AA during column filtration. The experimental data of silica adsorption fit best to Freundlich isotherm model.

More Details

Multi-objective Optimization of Solar-driven Hollow-fiber Membrane Distillation Systems

Nenoff, T.M.; Moore, Sarah E.; Mirchandani, Sera; Karanikola, Vasiliki; Arnold, Robert G.; Saez, Eduardo

Securing additional water sources remains a primary concern for arid regions in both the developed and developing world. Climate change is causing fluctuations in the frequency and duration of precipitation, which can be can be seen as prolonged droughts in some arid areas. Droughts decrease the reliability of surface water supplies, which forces communities to find alternate primary water sources. In many cases, ground water can supplement the use of surface supplies during periods of drought, reducing the need for above-ground storage without sacrificing reliability objectives. Unfortunately, accessible ground waters are often brackish, requiring desalination prior to use, and underdeveloped infrastructure and inconsistent electrical grid access can create obstacles to groundwater desalination in developing regions. The objectives of the proposed project are to (i) mathematically simulate the operation of hollow fiber membrane distillation systems and (ii) optimize system design for off-grid treatment of brackish water. It is anticipated that methods developed here can be used to supply potable water at many off-grid locations in semi-arid regions including parts of the Navajo Reservation. This research is a collaborative project between Sandia and the University of Arizona.

More Details

Removal of Dissolved Silica using Calcinated Hydrotalcite in Real-life Applications

Sasan, Koroush S.; Brady, Patrick V.; Krumhansl, James L.; Nenoff, T.M.

Water shortages are a growing global problem. Reclamation of industrial and municipal wastewater will be necessary in order to mitigate water scarcity. However, many operational challenges, such as silica scaling, prevent large scale water reuse. Previously, our team at Sandia has demonstrated the use of selective ion exchange materials, such as calcinated hydrotalcite (HTC, (Mg 6 Al 2 (OH) 16 (CO 3 )*4H 2 O)), for the low cost removal of silica from synthetic cooling tower water. However, it is not currently know if calcinated HTC has similar capabilities in realistic applications. The purpose of this study was to investigate the ability of calcinated HTC to remove silica from real cooling tower water. This was investigated under both batch and continuous conditions, and in the presence of competing ions. It was determined that calcinated HTC behaved similarly in real and synthetic cooling tower water; the HTC is highly selective for the silica even in the presence of competing cations. Therefore, the data concludes that calcinated HTC is a viable anti-scaling pretreatment for the reuse of industrial wastewaters.

More Details

Process Design and Techno-economic Analysis for Materials to Treat Produced Waters

Industrial and Engineering Chemistry Research

Heimer, Brandon W.; Paap, Scott M.; Sasan, Koroush S.; Brady, Patrick V.; Nenoff, T.M.

Significant quantities of water are produced during enhanced oil recovery making these “produced water” streams attractive candidates for treatment and reuse. However, high concentrations of dissolved silica raise the propensity for fouling. In this paper, we report the design and economic analysis for a new ion exchange process using calcined hydrotalcite (HTC) to remove silica from water. This process improves upon known technologies by minimizing sludge product, reducing process fouling, and lowering energy use. Process modeling outputs included raw material requirements, energy use, and the minimum water treatment price (MWTP). Monte Carlo simulations quantified the impact of uncertainty and variability in process inputs on MWTP. These analyses showed that cost can be significantly reduced if the HTC materials are optimized. Specifically, R&D improving HTC reusability, silica binding capacity, and raw material price can reduce MWTP by 40%, 13%, and 20%, respectively. Optimizing geographic deployment further improves cost competitiveness.

More Details
Results 126–150 of 347
Results 126–150 of 347