Public-facing solar hosting capacity (HC) maps, which show the maximum amount of solar energy that can be installed at a location without adverse effects, have proven to be a key driver of solar soft cost reductions through a variety of pathways (e.g., streamlining interconnection, siting, and customer acquisition processes). However, current methods for generating HC maps require detailed grid models and time-consuming simulations that limit both their accuracy and scalability—today, only a handful out of almost 2,000 utilities provide these maps. This project developed and validated data-driven algorithms for calculating solar HC using data from AMI without the need of detailed grid models or simulations. The algorithms were validated on utility datasets and incorporated as an application into NRECA’s Open Modeling Framework (OMF.coop) for the over 260 coops and vendors throughout the US to use. The OMF is free and open-source for everyone.
Although there are increasing numbers of distributed energy resources (DERs) and microgrids being deployed, current IEEE and utility standards generally strictly limit their interconnection inside secondary networks. Secondary networks are low-voltage meshed (non-radial) distribution systems that create redundancy in the path from the main grid source to each load. This redundancy provides a high level of immunity to disruptions in the distribution system, and thus extremely high reliability of electric power service. There are two main types of secondary networks, called grid and spot secondary networks, both of which are used worldwide. In the future, primary networks in distribution systems that might include looped or meshed distribution systems at the primary-voltage (medium-voltage) level may also become common as a means for improving distribution reliability and resilience.
The report summarizes the work and accomplishments of DOE SETO funded project 36533 “Adaptive Protection and Control for High Penetration PV and Grid Resilience”. In order to increase the amount of distributed solar power that can be integrated into the distribution system, new methods for optimal adaptive protection, artificial intelligence or machine learning based protection, and time domain traveling wave protection are developed and demonstrated in hardware-in-the-loop and a field demonstration.
This report summarizes a gap analysis resulting from a literature review and expert interviews conducted by subject matter experts from Sandia National Laboratory, Siemens, and the Electric Power Research Institute (EPRI) in Spring 2023. The gap analysis consists of two main parts: The fault-ride through (FRT) behavior of grid-forming (GFM) inverter-based resources (IBR) and the response of state-of-the-art protection relays to the fault currents and voltages from GFM IBRs.
Fault location, isolation, and service restoration of a self-healing, self-Assembling microgrid operating off-grid from distributed inverter-based resources (IBRs) can be a unique challenge because of the fault current limitations and uncertainties regarding which sources are operational at any given time. The situation can become even more challenging if data sharing between the various microgrid controllers, relays, and sources is not available. This paper presents an innovative robust partitioning approach, which is used as part of a larger self-Assembling microgrid concept utilizing local measurements only. This robust partitioning approach splits a microgrid into sub-microgrids to isolate the fault to just one of the sub-microgrids, allowing the others to continue normal operation. A case study is implemented in the IEEE 123-bus distribution test system in Simulink to show the effectiveness of this approach. The results indicate that including the robust partitions leads to less loss of load and shorter overall restoration times.
Before residential photovoltaic (PV) systems are interconnected with the grid, various planning and impact studies are conducted on detailed models of the system to ensure safety and reliability are maintained. However, these model-based analyses can be time-consuming and error-prone, representing a potential bottleneck as the pace of PV installations accelerates. Data-driven tools and analyses provide an alternate pathway to supplement or replace their model-based counterparts. In this article, a data-driven algorithm is presented for assessing the thermal limitations of PV interconnections. Using input data from residential smart meters, and without any grid models or topology information, the algorithm can determine the nameplate capacity of the service transformer supplying those customers. The algorithm was tested on multiple datasets and predicted service transformer capacity with >98% accuracy, regardless of existing PV installations. This algorithm has various applications from model-free thermal impact analysis for hosting capacity studies to error detection and calibration of existing grid models.
Shi, Naihao; Cheng, Rui; Liu, Liming; Wang, Zhaoyu; Zhang, Qianzhi; Reno, Matthew J.
Recent years have seen the increasing proliferation of distributed energy resources with intermittent power outputs, posing new challenges to the voltage management in distribution networks. To this end, this paper proposes a data-driven affinely adjustable robust Volt/VAr control (AARVVC) scheme, which modulates the smart inverter's reactive power in an affine function of its active power, based on the voltage sensitivities with respect to real/reactive power injections. To achieve a fast and accurate estimation of voltage sensitivities, we propose a data-driven method based on deep neural network (DNN), together with a rule-based bus-selection process using the bidirectional search method. Our method only uses the operating statuses of selected buses as inputs to DNN, thus significantly improving the training efficiency and reducing information redundancy. Finally, a distributed consensus-based solution, based on the alternating direction method of multipliers (ADMM), for the AARVVC is applied to decide the inverter's reactive power adjustment rule with respect to its active power. Only limited information exchange is required between each local agent and the central agent to obtain the slope of the reactive power adjustment rule, and there is no need for the central agent to solve any (sub)optimization problems. Numerical results on the modified IEEE-123 bus system validate the effectiveness and superiority of the proposed data-driven AARVVC method.
Accurate distribution system models are becoming increasingly critical for grid modernization tasks, and inaccurate phase labels are one type of modeling error that can have broad impacts on analyses using the distribution system models. This work demonstrates a phase identification methodology that leverages advanced metering infrastructure (AMI) data and additional data streams from sensors (relays in this case) placed throughout the medium-voltage sector of distribution system feeders. Intuitive confidence metrics are employed to increase the credibility of the algorithm predictions and reduce the incidence of false-positive predictions. The method is first demonstrated on a synthetic dataset under known conditions for robustness testing with measurement noise, meter bias, and missing data. Then, four utility feeders are tested, and the algorithm’s predictions are proven to be accurate through field validation by the utility. Lastly, the ability of the method to increase the accuracy of simulated voltages using the corrected model compared to actual measured voltages is demonstrated through quasi-static time-series (QSTS) simulations. The proposed methodology is a good candidate for widespread implementation because it is accurate on both the synthetic and utility test cases and is robust to measurement noise and other issues.
Before residential photovoltaic (PV) systems are interconnected with the grid, various planning and impact studies are conducted on detailed models of the system to ensure safety and reliability are maintained. However, these model-based analyses can be time-consuming and error-prone, representing a potential bottleneck as the pace of PV installations accelerates. Data-driven tools and analyses provide an alternate pathway to supplement or replace their model-based counterparts. In this article, a data-driven algorithm is presented for assessing the thermal limitations of PV interconnections. Using input data from residential smart meters, and without any grid models or topology information, the algorithm can determine the nameplate capacity of the service transformer supplying those customers. The algorithm was tested on multiple datasets and predicted service transformer capacity with >98% accuracy, regardless of existing PV installations. This algorithm has various applications from model-free thermal impact analysis for hosting capacity studies to error detection and calibration of existing grid models.
Distribution system model calibration is a key enabling task for incipient failure identification within the distribution system. This report summarizes the work and publications by Sandia National Laboratories on the GMLC project titled “Incipient Failure Identification for Common Grid Asset Classes”. This project was a joint effort between Sandia National Laboratories, Lawrence Livermore National Laboratory, National Energy Technology Laboratory, and Oak Ridge National Laboratory. The included work covers distribution system topology identification, transformer groupings, phase identification, regulator and tap position estimation, and the open-source release and implementation of the developed algorithms.
This SAND report collects the results from the LDRD project “SHAZAM”, which aimed to push the limits of performance for self-healing, self-assembling power systems whose sectionalizing and load-control agents rely on local measurements only (i.e., only what they can measure at their own terminals, with no data sharing between agents). This work includes self-networking microgrids. The key objectives of this work were a) to demonstrate how high the performance of local-measurement-only self-assembling power systems can be; and b) to solve certain technical problems associated with such systems, such as their inability to prevent the accidental formation of closed loops and their tendency to thermally overload some conductors. “SHAZAM” investigators a) demonstrated that the performance of such systems can be surprisingly high, b) demonstrated that such systems are quite robust to all kinds of variations, and c) developed and demonstrated solutions to several key challenges associated with this type of system.
Self-healing or self-assembling power systems that rely on local measurements for decision making can provide significant resilience benefits, but they also must include safeguards that prevent the system from self-assembling into an undesirable configuration. One potential undesirable configuration would be the formation of closed loops for which the system was not designed, a situation that can arise any time that two intentional-island systems can be connected in more than one place, e.g., if tie-line breakers are included in the self-assembling system. This paper discusses the unintentional loop formation problem in self-assembling systems and presents a method for mitigating it. This method involves calculating the correlation or the mean absolute error (MAE) between the two local frequency measurements made on either side of a line relay. The correlation and MAE between these frequencies changes significantly between the loop and non-loop cases, and this difference can be used for loop detection. This article presents and explains the method in detail, presents evidence that the method's underlying assumptions are valid, and demonstrates in PSCAD two implementations of the method. The paper concludes with a discussion of the strengths and weaknesses of the proposed method.
This paper presents a methodology for simultaneous fault detection, classification, and topology estimation for adaptive protection of distribution systems. The methodology estimates the probability of the occurrence of each one of these events by using a hybrid structure that combines three sub-systems, a convolutional neural network for topology estimation, a fault detection based on predictive residual analysis, and a standard support vector machine with probabilistic output for fault classification. The input to all these sub-systems is the local voltage and current measurements. A convolutional neural network uses these local measurements in the form of sequential data to extract features and estimate the topology conditions. The fault detector is constructed with a Bayesian stage (a multitask Gaussian process) that computes a predictive distribution (assumed to be Gaussian) of the residuals using the input. Since the distribution is known, these residuals can be transformed into a Standard distribution, whose values are then introduced into a one-class support vector machine. The structure allows using a one-class support vector machine without parameter cross-validation, so the fault detector is fully unsupervised. Finally, a support vector machine uses the input to perform the classification of the fault types. All three sub-systems can work in a parallel setup for both performance and computation efficiency. We test all three sub-systems included in the structure on a modified IEEE123 bus system, and we compare and evaluate the results with standard approaches.
In this report, we developed and validated a network protector relay digital twin model and interfaced a commonly used network protector relay hardware with our real-time simulation system. Hardware-in-the-loop protection studies are performed to assess the impact of distributed energy resources (DER) and benchmark a rate-of-change-based mitigation strategy. Simulation results suggest that the network protector reverse trip and auto-reclose functions are negatively impacted by the high distributed energy resource penetration. To accommodate DER backfeed while remaining secure and reliable for faults on primary feeders, we recommend options for a rate-of-change-based blocking scheme and a protection setting change. Finally, future mitigation ideas and standard revisions are discussed.
Due to their increased levels of reliability, meshed low-voltage (LV) grid and spot networks are common topologies for supplying power to dense urban areas and critical customers. Protection schemes for LV networks often use highly sensitive reverse current trip settings to detect faults in the medium-voltage system. As a result, interconnecting even low levels of distributed energy resources (DERs) can impact the reliability of the protection system and cause nuisance tripping. This work analyzes the possibility of modifying the reverse current relay trip settings to increase the DER hosting capacity of LV networks without impacting fault detection performance. The results suggest that adjusting relay settings can significantly increase DER hosting capacity on LV networks without adverse effects, and that existing guidance on connecting DERs to secondary networks, such as that contained in IEEE Std 1547-2018, could potentially be modified to allow higher DER deployment levels.