All disciplines that use models to predict the behavior of real-world systems need to determine the accuracy of the models’ results. Techniques for verification, validation, and uncertainty quantification (VVUQ) focus on improving the credibility of computational models and assessing their predictive capability. VVUQ emphasizes rigorous evaluation of models and how they are applied to improve understanding of model limitations and quantify the accuracy of model predictions.
The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (FCT) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high-level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are design concept development and disposal system modeling. These priorities are directly addressed in the SFWST Geologic Disposal Safety Assessment (GDSA) control account, which is charged with developing a geologic repository system modeling and analysis capability, and the associated software, GDSA Framework, for evaluating disposal system performance for nuclear waste in geologic media. GDSA Framework is supported by SFWST Campaign and its predecessor the Used Fuel Disposition (UFD) campaign. This report fulfills the GDSA Uncertainty and Sensitivity Analysis Methods work package (SF-21SN01030404) level 3 milestone, Uncertainty and Sensitivity Analysis Methods and Applications in GDSA Framework (FY2021) (M3SF-21SN010304042). It presents high level objectives and strategy for development of uncertainty and sensitivity analysis tools, demonstrates uncertainty quantification (UQ) and sensitivity analysis (SA) tools in GDSA Framework in FY21, and describes additional UQ/SA tools whose future implementation would enhance the UQ/SA capability of GDSA Framework. This work was closely coordinated with the other Sandia National Laboratory GDSA work packages: the GDSA Framework Development work package (SF-21SN01030405), the GDSA Repository Systems Analysis work package (SF-21SN01030406), and the GDSA PFLOTRAN Development work package (SF-21SN01030407). This report builds on developments reported in previous GDSA Framework milestones, particularly M3SF 20SN010304032.
Cyber testbeds provide an important mechanism for experimentally evaluating cyber security performance. However, as an experimental discipline, reproducible cyber experimentation is essential to assure valid, unbiased results. Even minor differences in setup, configuration, and testbed components can have an impact on the experiments, and thus, reproducibility of results. This paper documents a case study in reproducing an earlier emulation study, with the reproduced emulation experiment conducted by a different research group on a different testbed. We describe lessons learned as a result of this process, both in terms of the reproducibility of the original study and in terms of the different testbed technologies used by both groups. This paper also addresses the question of how to compare results between two groups' experiments, identifying candidate metrics for comparison and quantifying the results in this reproduction study.
The modern scientific process often involves the development of a predictive computational model. To improve its accuracy, a computational model can be calibrated to a set of experimental data. A variety of validation metrics can be used to quantify this process. Some of these metrics have direct physical interpretations and a history of use, while others, especially those for probabilistic data, are more difficult to interpret. In this work, a variety of validation metrics are used to quantify the accuracy of different calibration methods. Frequentist and Bayesian perspectives are used with both fixed effects and mixed-effects statistical models. Through a quantitative comparison of the resulting distributions, the most accurate calibration method can be selected. Two examples are included which compare the results of various validation metrics for different calibration methods. It is quantitatively shown that, in the presence of significant laboratory biases, a fixed effects calibration is significantly less accurate than a mixed-effects calibration. This is because the mixed-effects statistical model better characterizes the underlying parameter distributions than the fixed effects model. The results suggest that validation metrics can be used to select the most accurate calibration model for a particular empirical model with corresponding experimental data.
The shock hydrodynamics code ALEGRA and the optimization and uncertainty quantification toolkit Dakota are used to calibrate and select between three competing steel yield models, taking uncertainties in the system into account. A Bayesian model selection procedure is used to choose between the models in a systematic, automated fashion, within an uncertainty quantification workflow. Time-series penetration data of a long tungsten-alloy rod impacting a hardened steel plate at approximately 1250 m/s, along with their measurement uncertainty, are used to calibrate and select between the models. The procedure finds that between the Johnson–Cook, Steinberg–Guinan–Lund, and Zerilli–Armstrong stress models, Zerilli–Armstrong performs the best.
Network modeling is a powerful tool to enable rapid analysis of complex systems that can be challenging to study directly using physical testing. Two approaches are considered: emulation and simulation. The former runs real software on virtualized hardware, while the latter mimics the behavior of network components and their interactions in software. Although emulation provides an accurate representation of physical networks, this approach alone cannot guarantee the characterization of the system under realistic operative conditions. Operative conditions for physical networks are often characterized by intrinsic variability (payload size, packet latency, etc.) or a lack of precise knowledge regarding the network configuration (bandwidth, delays, etc.); therefore uncertainty quantification (UQ) strategies should be also employed. UQ strategies require multiple evaluations of the system with a number of evaluation instances that roughly increases with the problem dimensionality, i.e., the number of uncertain parameters. It follows that a typical UQ workflow for network modeling based on emulation can easily become unattainable due to its prohibitive computational cost. In this paper, a multifidelity sampling approach is discussed and applied to network modeling problems. The main idea is to optimally fuse information coming from simulations, which are a low-fidelity version of the emulation problem of interest, in order to decrease the estimator variance. By reducing the estimator variance in a sampling approach it is usually possible to obtain more reliable statistics and therefore a more reliable system characterization. Several network problems of increasing difficulty are presented. For each of them, the performance of the multifidelity estimator is compared with respect to the single fidelity counterpart, namely, Monte Carlo sampling. For all the test problems studied in this work, the multifidelity estimator demonstrated an increased efficiency with respect to MC.
This report presents the results of a collaborative effort under the Verification, Validation, and Uncertainty Quantification (VVUQ) thrust area of the North American Energy Resilience Model (NAERM) program. The goal of the effort described in this report was to integrate the Dakota software with the NAERM software framework to demonstrate sensitivity analysis of a co-simulation for NAERM.
Gaussian process regression is a popular Bayesian framework for surrogate modeling of expensive data sources. As part of a larger effort in scientific machine learning, many recent works have incorporated physical constraints or other a priori information within Gaussian process regression to supplement limited data and regularize the behavior of the model. We provide an overview and survey of several classes of Gaussian process constraints, including positivity or bound constraints, monotonicity and convexity constraints, differential equation constraints provided by linear PDEs, and boundary condition constraints. We compare the strategies behind each approach as well as the differences in implementation, concluding with a discussion of the computational challenges introduced by constraints.