Publications

Results 26–50 of 126

Search results

Jump to search filters

Exploring life extension opportunitites of high-pressure hydrogen pressure vessels at refueling stations

American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP

Ronevich, Joseph A.; San Marchi, Christopher W.; Brooks, Dusty M.; Emery, John M.; Grimmer, Peter W.; Chant, Eileen; Robert Sims, J.; Belokobylka, Alex; Farese, Dave; Felbaum, John

High pressure Type 2 hoop-wrapped, thick-walled vessels are commonly used at hydrogen refueling stations. Vessels installed at stations circa 2010 are now reaching their design cycle limit and are being retired, which is the motivation for exploring life extension opportunities. The number of design cycles is based on a fatigue life calculation using a fracture mechanics assessment according to ASME Section VIII, Division 3, which assumes each cycle is the full pressure range identified in the User's Design Specification for a given pressure vessel design; however, assessment of service data reveals that the actual pressure cycles are more conservative than the design specification. A case study was performed in which in-service pressure cycles were used to re-calculate the design cycles. It was found that less than 1% of the allowable crack extension was consumed when crack growth was assessed using in-service design pressures compared to the original design fatigue life from 2010. Additionally, design cycles were assessed on the 2010 era vessels based on design curves from the recently approved ASME Code Case 2938, which were based on fatigue crack growth rate relationships over a broader range of K. Using the Code Case 2938 design curves yielded nearly 2.7 times greater design cycles compared to the 2010 vessel original design basis. The benefits of using inservice pressure cycles to assess the design life and the implications of using the design curves in Code Case 2938 are discussed in detail in this paper.

More Details

Relating microstructure to defect behavior in AA6061 using a combined computational and multiscale electron microscopy approach

Acta Materialia

Lim, Hojun L.; Yoo, Yung S.J.; Carroll, Jay D.; Emery, John M.; Kacher, Josh

In this study, a multiscale electron microscopy-based approach is applied to understanding how different aspects of the microstructure in a notched AA6061-T6, including grain boundaries, triple junctions, and intermetallic particles, promote localized dislocation accumulation as a function of applied tensile strain and depth from the sample surface. Experimental measurements and crystal plasticity simulations of dislocation distributions as a function of distance from specified microstructural features both showed preferential dislocation accumulation near intermetallic particles relative to grain boundaries and triple junctions. High resolution electron backscatter diffraction and site-specific transmission electron microscopy characterization showed that high levels of dislocation accumulation near intermetallic particles led to the development of an ultrafine sub-grain microstructure, indicative of a much higher level of local plasticity than predicted from the coarser measurements and simulations. In addition, high resolution measurements in front of a crack tip suggested a compounding influence of intermetallic particles and grain boundaries in dictating crack propagation pathways.

More Details

Predicting the reliability of an additively-manufactured metal part for the third Sandia fracture challenge by accounting for random material defects

International Journal of Fracture

Johnson, Kyle J.; Emery, John M.; Hammetter, Christopher H.; Brown, Judith A.; Grange, Spencer G.; Ford, Kurtis R.; Bishop, Joseph E.

We describe an approach to predict failure in a complex, additively-manufactured stainless steel part as defined by the third Sandia Fracture Challenge. A viscoplastic internal state variable constitutive model was calibrated to fit experimental tension curves in order to capture plasticity, necking, and damage evolution leading to failure. Defects such as gas porosity and lack of fusion voids were represented by overlaying a synthetic porosity distribution onto the finite element mesh and computing the elementwise ratio between pore volume and element volume to initialize the damage internal state variables. These void volume fraction values were then used in a damage formulation accounting for growth of these existing voids, while new voids were allowed to nucleate based on a nucleation rule. Blind predictions of failure are compared to experimental results. The comparisons indicate that crack initiation and propagation were correctly predicted, and that an initial porosity field superimposed as higher initial damage may provide a path forward for capturing material strength uncertainty. The latter conclusion was supported by predicted crack face tortuosity beyond the usual mesh sensitivity and variability in predicted strain to failure; however, it bears further inquiry and a more conclusive result is pending compressive testing of challenge-built coupons to de-convolute materials behavior from the geometric influence of significant porosity.

More Details

Cohesive zone models for reduced-order fastener failure

AIAA Scitech 2019 Forum

Reeder, Brett; Grimmer, Peter W.; Emery, John M.

Joining technologies such as welds, adhesives, and bolts are nearly ubiquitous and often lead to concentrated stresses, making them key in analyzing failure of a structure. While high-fidelity models for fasteners have been developed, they are impractical for use in a full system or component analyses, which may involve hundreds of fasteners undergoing mixed loading. Other failure models for fasteners which use specialized boundary conditions, e.g., spot welds, do well in replicating the load-displacement response of a fastener in a mesh independent manner, but are limited in their ability to transmit a bending moment and require constitutive assumptions when there is a lack of experimental data. A reduced-order finite element model using cohesive surface elements to model fastener failure is developed. A cohesive zone allows for more explicitly representing the fracture of the fastener, rather than simply specifying a load-displacement relationship between two surfaces as in the spot weld. This fastener model is assessed and calibrated against tensile and shear loading data and compared to a traditional spot weld approach. The cohesive zone model can reproduce the experimental data, demonstrating its viability as a reduced-order model of fastener behavior.

More Details
Results 26–50 of 126
Results 26–50 of 126