The overall goal of this investigation was to develop an innovative high-temperature chloride molten salt flow control valve capable of operation up to 750 °C. The team developed an integrated active and passive thermal management system to ensure robust design for freeze-thaw cycles, with either a bellows-sealed configuration, a high-temperature stuffing box, or combination of the two. The STM system is unique in the industry.
The Sandia National Laboratories (SNL) National Solar Thermal Test Facility (NSTTF) conducted efficacy testing on a shut-off isolation valve for use with molten ternary chloride salt. A ball valve was tested under controlled N2 ullage gas pressure and connected with flanged fittings that featured a spiral-wound gasket. The valve assembly consisted of boronized nickel coated SS316 components, with design features that greatly reduce the cost of overall valve assembly. Testing results showed that the valve did not leak, and post-test analysis demonstrated that the ball, seat, packing, and body all survived both the heat loads and the relative corrosive environment. Spiral-wound gaskets for flanged connections used in the system also functioned nominally, with no leaks or signs of failures during post-test analysis. However, testing was ultimately forced to rapidly stop after testing between 500-530°C as the actuator used on the valve failed in the heat, preventing the valve from sealing in the closed position. In addition, salt plugs and salt vapor plating also prevented the test from continuing.
The United Sates Department of Energy (DOE) Generation 3 Concentrated Solar Power (CSP) program is interested in higher efficiency power systems at lower costs, potentially with systems utilizing chloride molten salts. Ternary chloride molten salts are corrosive and need to be held at high temperatures to achieve higher power system efficiencies. However, materials and cost of manufacturing of such a facility can be very expensive, particularly using exotic materials that are not always readily available. Materials that can withstand the harsh corrosive and thermal-mechanical environments of high-temperature molten salt systems (>700 ℃) are needed. High temperature systems offer greater thermodynamic efficiency but must also make cost efficient use of corrosion-resistant alloys. To ensure reliable high-performance operation for molten salt power plant designs confidence in materials compatibility with CSP Gen 3 halide salts must be established. This paper will present an analysis of Inconel 625 as an alternative to the costly Haynes 230 at 760℃ for 500 hours. Both metals were tested in an unaltered state as well as a homogenous weld. Each sample was weighed pre- and post-test, with a final composition analysis using Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS). Preliminary findings suggest that Haynes 230 outperformed Inconel 625, but more research at longer durations, 1,000 hours will be required for full reliable assessment.
Research is presented for carbon emissions abatement utilizing concentrating solar power (CSP) heating for culinary industrial process heat applications of roasting peppers. For this investigation the Sandia National Laboratories (SNL) performed high-intensity flux profile heating, as high as approximately 12.2 W/cm2 roasting peppers near 615oC. This work also explores the suitability of culinary roasting as applied to different forms of CSP heating as well as techno-economic costs. Traditionally, chile pepper roasting has used propane gas source heating to achieve similar temperatures and food roasting profiles in batch style processing. Here, the investigators roasted peppers on the top level of the National Solar Thermal Test Facility (NSTTF) solar tower for multiple roasting trials, with and without water. For comparison, the team also performed roasting from a traditional propane gas heating source, monitoring the volume of propane being consumed over time to assess carbon emissions that were abated using CSP. Results found that roasting peppers with CSP facilitated approximately 26 MJ of energy that abated approximately 0.122 kg CO2/kg chile for a 10 kg bag. The team also determined that pre-wetting the peppers before roasting both under propane and CSP heat sources increased the roast time by approximately 3 minutes to achieve the same qualitative optimal roast state compared to dry peppers.
The following report contains data and data summaries collected for the SkySun LLC elevated Ganged PV arrays. These arrays were fabricated as a series of PV panels in various orientations, suspended by cables, at the National Solar Thermal Test Facility (NSTTF) at Sandia National Laboratories (SNL). Starting in February of 2021, Sandia personnel have collected power and accelerometer data for these arrays to assess design and operational efficacy of varying ganged- PV configurations. The purpose of this power data collection was to see how the various array orientations compare in power collection capability depending on the time of day, year, and the specific daily solar direct normal irradiance (DNI). The power data was collected as a measurement of the power output from the various series strings. The project team measured direct current (DC) voltage and current from the respective arrays. The accelerometer data was collected with the purpose of demonstrating potential destructive mode shapes that could take place with each of the arrays when exposed to high winds. This allowed the team to evaluate whether impacts with respect to specific array orientations using suspended cables is a safe design. All data collection was performed during calendar year 2021.
Sandia National Laboratories (SNL) National Solar Thermal Test Facility (NSTTF) and Tech Library have been collaborating over the course of the FY19 period to establish and maintain the first and only digital collection in the world of Concentrating Solar Power (CSP) related historical documents, dating back to the CSP program inception here at Sandia in the 1970's thru to the present. The unclassified, unrestricted (UUR) collection, comprised of internally generated Sandia documents as well as a significant number of external reports will be searchable via both the Sandia website and OSTI, DOE's document repository. DOE is currently championing efforts to get the collection launched, where international partners, which include Australia and Germany, plan to forward related documents to be included in the CSP archive. Advancing this transformative project will make the CSP collection accessible to the Sandia and global communities.