Understanding and Predicting Stress Corrosion Cracking of SNF Dry Storage Canisters
Proceedings of the International High-Level Radioactive Waste Management Conference, IHLRWM 2022, Embedded with the 2022 ANS Winter Meeting
Abstract not provided.
Proceedings of the International High-Level Radioactive Waste Management Conference, IHLRWM 2022, Embedded with the 2022 ANS Winter Meeting
Abstract not provided.
Proceedings of the International High Level Radioactive Waste Management Conference Ihlrwm 2022 Embedded with the 2022 Ans Winter Meeting
Abstract not provided.
Proceedings of the International High-Level Radioactive Waste Management Conference, IHLRWM 2022, Embedded with the 2022 ANS Winter Meeting
Abstract not provided.
Abstract not provided.
This progress report describes work performed during FY21 at Sandia National Laboratories (SNL) to assess the localized corrosion performance of canister materials used in the interim storage of spent nuclear fuel (SNF). Of particular concern is stress corrosion cracking (SCC), by which a through-wall crack could potentially form in a canister outer wall over time intervals that are shorter than possible dry storage times. In FY21, modeling and experimental work was performed that further defined our understanding of the potential chemical and physical environment present on canister surfaces at both marine and inland sites. Research also evaluated the relationship between the environment and the rate, extent, and morphology of corrosion, as well as the corrosion processes that occur. Finally, crack growth rate testing under relevant environmental conditions was initiated.
This report summarizes the current actives in FY21 related to the effort by Sandia National Laboratories to identify and test coating materials for the prevention, mitigation, and repair of spent nuclear fuel dry storage canisters against potential chloride-induced stress corrosion cracking. This work follows up on the details provided in Sandia National Laboratories FY20 report on the same topic, which provided a detailed description of the specific coating properties desired for application and implementation on spent nuclear fuel canisters, as well as provided detail into several different coatings and their applicability to coat spent nuclear fuel canisters. In FY21, Sandia National Laboratories has engaged with private industry to create a Memorandum of Understanding and established a collaborative R&D program building off the analytical and laboratory capabilities at Sandia National Laboratories and the material design and synthesis capabilities of private industry. The resulting Memorandum of Understanding included four companies to date (Oxford Performance Materials, White Horse R&D, Luna Innovations, and Flora Coating) proposing six different coating technologies (polyetherketoneketone, modified polyimide/polyurea, modified phenolic resin, silane-based polyurethane hybrid with and without a Znrich primer, and a quasi-ceramic sol-gel polyurethane hybrid) to be tested, evaluated, and optimized for their potential use for this application. This report provides a detailed description of each of the coating systems proposed by the participating industry partners. It also provides a description of the planned experimental actives to be performed by Sandia National Laboratories including physical tests, electrochemical tests, and characterization methods. These analyses will be used to identify specific ways to further improve coating technologies toward their application and implementation on spent nuclear fuel canisters. In FY21, Sandia National Laboratories began baseline testing of the base metal material in according with activities of the Memorandum of Understanding. In FY22, Sandia National Laboratories will receive coated coupons from each of the participating industry partners and begin characterization, physical, and electrochemical testing following the test plan described herein.
Abstract not provided.
Abstract not provided.
This report describes plans for dust sampling and analysis for the multi-year Canister Deposition Field Demonstration. The demonstration will use three commercial 32PTH2 NUHOMS welded stainless steel storage canisters, which will be stored at an ISFSI site in Advanced Horizontal Storage Modules. One canister will be unheated; the other two will have heaters to achieve canister surface temperatures that match, to the degree possible, spent nuclear fuel (SNF) loaded canisters with heat loads of 10 kW and 40 kW. Surface sampling campaigns will take place on a yearly or bi-yearly basis. The goal of the planned dust sampling and analysis is to determine important environmental parameters that impact the potential occurrence of stress corrosion cracking on SNF dry storage canisters. Specifically, the size, morphology, and composition of the deposited dust and salt particles will be quantified, as well as the soluble salt load per unit area and the rate of deposition, as a function of canister surface temperature, location, time, and orientation. Sampling locations on the canister surface will nominally include 25 locations, corresponding to 5 circumferential locations at each of the 5 longitudinal locations. At each sampling location, a 2x2 sampling grid (containing 4 sample cells) will be painted onto the metal surface. During each sampling campaign, two samples at each sampling location will be collected, in a specific routine to measure both periodic (yearly or bi-yearly) and cumulative deposition rates. For each sample, a wet and a dry sample will be collected. Wet samples will be analyzed to determine the composition of the soluble salt fraction and to estimate salt loading per unit area. Dry samples will be analyzed to assess particle size, morphology, mineralogy, and identity (e.g. for floral/faunal fragments). The data generated by this proposed sampling plan will provide detailed information on dust and salt aerosol deposits on spent nuclear fuel canister surfaces. The anticipated results include information regarding particle compositions, size distributions, and morphologies, in addition to particle deposition rates as a function of canister surface location, orientation, time, and temperature. The information gathered during the Canister Deposition Field Demonstration is critical for ongoing efforts to develop a detailed understanding of the potential for stress corrosion cracking on SNF dry storage canisters
Journal of the Electrochemical Society
The natural convection boundary layer (${\delta }_{nc}$) and its influence on cathodic current in a galvanic couple under varying electrolytes as a function of concentration (1 - 5.3 M NaCl) and temperature (25 °C-45 °C) were understood. Polarization scans were obtained under quiescent conditions and at defined boundary layer thicknesses using a rotating disk electrode on platinum and stainless steel 304L (SS304L); these were combined to determine ${\delta }_{nc}.$ With increasing chloride concentration and temperature, ${\delta }_{nc}$ decreased. Increased mass transport (Sherwood number) results in a decrease in ${\delta }_{nc},$ providing a means to predict this important boundary. Using Finite Element Modeling, the cathodic current was calculated for an aluminum alloy/SS304L galvanic couple as a function of water layer (WL) thickness and cathode length. Electrolyte domains were delineated, describing (i) dominance of ohmic resistance over mass transport under thin WL, (ii) the transition from thin film to bulk conditions at ${\delta }_{nc},$ and (iii) dominance of mass transport under thick WL. With increasing chloride concentration, cathodic current decreased due to decreases in mass transport. With increasing temperature, increased cathodic current was related to increases in mass transport and solution conductivity. This study has implications for sample sizing and corrosion prediction under changing environments.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Scientific Reports
We present evidence of inverse Hall-Petch behavior for a single-phase high entropy alloy (CoCrFeMnNi) in ultra-high vacuum and show that it is associated with low friction coefficients (~0.3). Grain size measurements by STEM validate a recently proposed dynamic amorphization model that accurately predicts grain size-dependent shear strength in the inverse Hall-Petch regime. Wear rates in the initially soft (coarse grained) material were shown to be remarkably low (~10–6 mm3/N-m), the lowest for any HEA tested in an inert environment where oxidation and the formation of mixed metal-oxide films is mitigated. The combined high wear resistance and low friction are linked to the formation of an ultra-nanocrystalline near-surface layer. The dynamic amorphization model was also used to predict an average high angle grain boundary energy (0.87 J/m2). This value was used to explain cavitation-induced nanoporosity found in the highly deformed surface layer, a phenomenon that has been linked to superplasticity.
This progress report describes work performed during FY20 at Sandia National Laboratories (SNL) to assess the localized corrosion performance of container/cask materials used in the interim storage of spent nuclear fuel (SNF). Of particular concern is stress corrosion cracking (SCC), by which a through-wall crack could potentially form in a canister outer wall over time intervals that are shorter than possible dry storage times. Work in FY20 further defined our understanding of the potential chemical and physical environment present on canister surfaces, evaluated the relationship between the environment and the resultant corrosion that occurs, and initiated crack growth rate testing under relevant environmental conditions. In FY20, work to define dry storage canister surface environments included several tasks. First, collection of dust deposition specimens from independent spent fuel storage installation (ISFSI) site locations helped to establish a more complete understanding of the potential chemical environment formed on the canister. Second, the predicted evolution of canister surface relative humidity RH) values was estimated using ISFSI site weather data and the horizontal canister thermal model used by the SNL probabilistic SCC model. These calculations determined that for typical ISFSI weather conditions, seasalt deliquescence to produce MgCl2-rich brines could occur in less than 20 years at the coolest locations on the canister surface, and, even after nearly 300 years, conditions for NaCl deliquescence (75% RH) are not reached. This work illustrates the importance of understanding the stability of MgCl2-rich brines on the heated canister surface, and the potential impact of brine composition on corrosion processes, including pitting and stress corrosion cracking. In an additional study, the description of the canister surface environment was refined in order to define more realistic corrosion testing environments including diurnal cycles, soluble salt chemistries, and inert mineral particles. The potential impacts of these phenomena on canister corrosion are being evaluated experimentally. Finally, work over the past few years to evaluate the stability of magnesium chloride brines continued in FY20. MgCl2 degassing experiments were carried out, confirming that MgCl2 brines slowly degas HCl on heated surfaces, converting to less deliquescent magnesium hydroxychloride phases and potentially leading to brine dryout.
Abstract not provided.
Physical Review Materials
Low friction is demonstrated with pure polycrystalline tantalum sliding contacts in both molecular dynamics simulations and ultrahigh vacuum experiments. This phenomenon is shown to be correlated with deformation occurring primarily through grain boundary sliding and can be explained using a recently developed predictive model for the shear strength of metals. Specifically, low friction is associated with grain sizes at the interface being smaller than a critical, material-dependent value, where a crossover from dislocation mediated plasticity to grain-boundary sliding occurs. Low friction is therefore associated with inverse Hall-Petch behavior and softening of the interface. Direct quantitative comparisons between experiments and atomistic calculations are used to illustrate the accuracy of the predictions.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.