Towards Generic Parallel Programming in Computer Science Education with Kokkos
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physics of Plasmas
Understanding the effects of contaminant plasmas generated within the Z machine at Sandia is critical to understanding current loss mechanisms. The plasmas are generated at the accelerator electrode surfaces and include desorbed species found in the surface and substrate of the walls. These desorbed species can become ionized. The timing and location of contaminant species desorbed from the wall surface depend non-linearly on the local surface temperature. For accurate modeling, it is necessary to utilize wall heating models to estimate the amount and timing of material desorption. One of these heating mechanisms is Joule heating. We propose several extended semi-analytic magnetic diffusion heating models for computing surface Joule heating and demonstrate their effects for several representative current histories. We quantitatively assess under what circumstances these extensions to classical formulas may provide a validatable improvement to the understanding of contaminant desorption timing.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Computer Methods in Applied Mechanics and Engineering
This work presents the design of nonlinear stabilization techniques for the finite element discretization of Euler equations in both steady and transient form. Implicit time integration is used in the case of the transient form. A differentiable local bounds preserving method has been developed, which combines a Rusanov artificial diffusion operator and a differentiable shock detector. Nonlinear stabilization schemes are usually stiff and highly nonlinear. This issue is mitigated by the differentiability properties of the proposed method. Moreover, in order to further improve the nonlinear convergence, we also propose a continuation method for a subset of the stabilization parameters. The resulting method has been successfully applied to steady and transient problems with complex shock patterns. Numerical experiments show that it is able to provide sharp and well resolved shocks. The importance of the differentiability is assessed by comparing the new scheme with its non-differentiable counterpart. Numerical experiments suggest that, for up to moderate nonlinear tolerances, the method exhibits improved robustness and nonlinear convergence behavior for steady problems. In the case of transient problem, we also observe a reduction in the computational cost.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report is an institutional record of experiments conducted to explore performance of a vendor installation of CephFS on the SNL stria cluster. Comparisons between CephFS, the Lustre parallel file system, and NFS were done using the IOR and MDTEST benchmarking tools, a test program which uses the SEACAS/Trilinos IOSS library, and the checkpointing activity performed by the LAMMPS molecular dynamics simulation.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
A technique called the splice method for coupling local to peridynamic subregions of a body is described. The method relies on ghost nodes, whose values of displacement are interpolated from nearby physical nodes, to make each subregion visible to the other. In each time step, the nodes in each subregion treat the nodes in the other subregion as boundary conditions. Adaptively changing the subregions is possible through the creation and deletion of ghost nodes. Example problems in 2D and 3D illustrate how the method is used to perform multiscale modeling of fracture and impact events within a larger structure.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Quantum Science and Technology
PyGSTi is a Python software package for assessing and characterizing the performance of quantum computing processors. It can be used as a standalone application, or as a library, to perform a wide variety of quantum characterization, verification, and validation (QCVV) protocols on as-built quantum processors. We outline pyGSTi's structure, and what it can do, using multiple examples. We cover its main characterization protocols with end-to-end implementations. These include gate set tomography, randomized benchmarking on one or many qubits, and several specialized techniques. We also discuss and demonstrate how power users can customize pyGSTi and leverage its components to create specialized QCVV protocols and solve user-specific problems.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.