Publications

Results 651–700 of 9,998

Search results

Jump to search filters

Data-driven learning of nonautonomous systems

SIAM Journal on Scientific Computing

Qin, Tong; Chen, Zhen; Jakeman, John D.; Xiu, Dongbin

We present a numerical framework for recovering unknown nonautonomous dynamical systems with time-dependent inputs. To circumvent the difficulty presented by the nonautonomous nature of the system, our method transforms the solution state into piecewise integration of the system over a discrete set of time instances. The time-dependent inputs are then locally parameterized by using a proper model, for example, polynomial regression, in the pieces determined by the time instances. This transforms the original system into a piecewise parametric system that is locally time invariant. We then design a deep neural network structure to learn the local models. Once the network model is constructed, it can be iteratively used over time to conduct global system prediction. We provide theoretical analysis of our algorithm and present a number of numerical examples to demonstrate the effectiveness of the method.

More Details

RVMA: Remote virtual memory access

Proceedings - 2021 IEEE 35th International Parallel and Distributed Processing Symposium, IPDPS 2021

Grant, Ryan E.; Levenhagen, Michael J.; Dosanjh, Matthew D.; Widener, Patrick W.

Remote Direct Memory Access (RDMA) capabilities have been provided by high-end networks for many years, but the network environments surrounding RDMA are evolving. RDMA performance has historically relied on using strict ordering guarantees to determine when data transfers complete, but modern adaptively-routed networks no longer provide those guarantees. RDMA also exposes low-level details about memory buffers: either all clients are required to coordinate access using a single shared buffer, or exclusive resources must be allocatable per-client for an unbounded amount of time. This makes RDMA unattractive for use in many-to-one communication models such as those found in public internet client-server situations.Remote Virtual Memory Access (RVMA) is a novel approach to data transfer which adapts and builds upon RDMA to provide better usability, resource management, and fault tolerance. RVMA provides a lightweight completion notification mechanism which addresses RDMA performance penalties imposed by adaptively-routed networks, enabling high-performance data transfer regardless of message ordering. RVMA also provides receiver-side resource management, abstracting away previously-exposed details from the sender-side and removing the RDMA requirement for exclusive/coordinated resources. RVMA requires only small hardware modifications from current designs, provides performance comparable or superior to traditional RDMA networks, and offers many new features.In this paper, we describe RVMA's receiver-managed resource approach and how it enables a variety of new data-transfer approaches on high-end networks. In particular, we demonstrate how an RVMA NIC could implement the first hardware-based fault tolerant RDMA-like solution. We present the design and validation of an RVMA simulation model in a popular simulation suite and use it to evaluate the advantages of RVMA at large scale. In addition to support for adaptive routing and easy programmability, RVMA can outperform RDMA on a 3D sweep application by 4.4X.

More Details

Multiscale System Modeling of Single-Event-Induced Faults in Advanced Node Processors

IEEE Transactions on Nuclear Science

Cannon, Matthew J.; Rodrigues, Arun; Black, Dolores A.; Black, Jeff; Bustamante, Luis G.; Feinberg, Benjamin F.; Quinn, Heather; Clark, Lawrence T.; Brunhaver, John S.; Barnaby, Hugh; McLain, Michael L.; Agarwal, Sapan A.; Marinella, Matthew J.

Integration-technology feature shrink increases computing-system susceptibility to single-event effects (SEE). While modeling SEE faults will be critical, an integrated processor's scope makes physically correct modeling computationally intractable. Without useful models, presilicon evaluation of fault-tolerance approaches becomes impossible. To incorporate accurate transistor-level effects at a system scope, we present a multiscale simulation framework. Charge collection at the 1) device level determines 2) circuit-level transient duration and state-upset likelihood. Circuit effects, in turn, impact 3) register-transfer-level architecture-state corruption visible at 4) the system level. Thus, the physically accurate effects of SEEs in large-scale systems, executed on a high-performance computing (HPC) simulator, could be used to drive cross-layer radiation hardening by design. We demonstrate the capabilities of this model with two case studies. First, we determine a D flip-flop's sensitivity at the transistor level on 14-nm FinFet technology, validating the model against published cross sections. Second, we track and estimate faults in a microprocessor without interlocked pipelined stages (MIPS) processor for Adams 90% worst case environment in an isotropic space environment.

More Details

An asymptotically compatible treatment of traction loading in linearly elastic peridynamic fracture

Computer Methods in Applied Mechanics and Engineering

Yu, Yue; You, Huaiqian; Trask, Nathaniel A.

Meshfree discretizations of state-based peridynamic models are attractive due to their ability to naturally describe fracture of general materials. However, two factors conspire to prevent meshfree discretizations of state-based peridynamics from converging to corresponding local solutions as resolution is increased: quadrature error prevents an accurate prediction of bulk mechanics, and the lack of an explicit boundary representation presents challenges when applying traction loads. In this paper, we develop a reformulation of the linear peridynamic solid (LPS) model to address these shortcomings, using improved meshfree quadrature, a reformulation of the nonlocal dilatation, and a consistent handling of the nonlocal traction condition to construct a model with rigorous accuracy guarantees. In particular, these improvements are designed to enforce discrete consistency in the presence of evolving fractures, whose a priori unknown location render consistent treatment difficult. In the absence of fracture, when a corresponding classical continuum mechanics model exists, our improvements provide asymptotically compatible convergence to corresponding local solutions, eliminating surface effects and issues with traction loading which have historically plagued peridynamic discretizations. When fracture occurs, our formulation automatically provides a sharp representation of the fracture surface by breaking bonds, avoiding the loss of mass. We provide rigorous error analysis and demonstrate convergence for a number of benchmarks, including manufactured solutions, free-surface, nonhomogeneous traction loading, and composite material problems. Finally, we validate simulations of brittle fracture against a recent experiment of dynamic crack branching in soda-lime glass, providing evidence that the scheme yields accurate predictions for practical engineering problems.

More Details

AI-Enhanced Co-Design for Next-Generation Microelectronics: Innovating Innovation (Workshop Report)

Descour, Michael R.; Tsao, Jeffrey Y.; Stracuzzi, David J.; Wakeland, Anna K.; Schultz, David R.; Smith, William; Weeks, Jacquilyn A.

On April 6-8, 2021, Sandia National Laboratories hosted a virtual workshop to explore the potential for developing AI-Enhanced Co-Design for Next-Generation Microelectronics (AICoM). The workshop brought together two themes. The first theme was articulated in the 2018 Department of Energy Office of Science (DOE SC) “Basic Research Needs for Microelectronics” (BRN) report, which called for a “fundamental rethinking” of the traditional design approach to microelectronics, in which subject matter experts (SMEs) in each microelectronics discipline (materials, devices, circuits, algorithms, etc.) work near-independently. Instead, the BRN called for a non-hierarchical, egalitarian vision of co-design, wherein “each scientific discipline informs and engages the others” in “parallel but intimately networked efforts to create radically new capabilities.” The second theme was the recognition of the continuing breakthroughs in artificial intelligence (AI) that are currently enhancing and accelerating the solution of traditional design problems in materials science, circuit design, and electronic design automation (EDA).

More Details

Consistency testing for robust phase estimation

Physical Review A

Russo, Antonio R.; Kirby, William M.; Rudinger, Kenneth M.; Baczewski, Andrew D.; Kimmel, Shelby

We present an extension to the robust phase estimation protocol, which can identify incorrect results that would otherwise lie outside the expected statistical range. Robust phase estimation is increasingly a method of choice for applications such as estimating the effective process parameters of noisy hardware, but its robustness is dependent on the noise satisfying certain threshold assumptions. We provide consistency checks that can indicate when those thresholds have been violated, which can be difficult or impossible to test directly. We test these consistency checks for several common noise models, and identify two possible checks with high accuracy in locating the point in a robust phase estimation run at which further estimates should not be trusted. One of these checks may be chosen based on resource availability, or they can be used together in order to provide additional verification.

More Details
Results 651–700 of 9,998
Results 651–700 of 9,998