Publications

Results 101–124 of 124

Search results

Jump to search filters

A many-electron tight binding method for the analysis of quantum dot systems

Journal of Applied Physics

Nielsen, Erik N.; Rahman, Rajib R.; Muller, Richard P.

We present a method which computes many-electron energies and eigenfunctions by a full configuration interaction, which uses a basis of atomistic tight-binding wave functions. This approach captures electron correlation as well as atomistic effects, and is well suited to solid state quantum dot systems containing few electrons, where valley physics and disorder contribute significantly to device behavior. Results are reported for a two-electron silicon double quantum dot as an example. © 2012 American Institute of Physics.

More Details

The QCAD framework for quantum device modeling

Computational Electronics (IWCE), 2012 15th International Workshop on

Gao, Xujiao G.; Nielsen, Erik N.; Muller, Richard P.; Young, Ralph W.; Salinger, Andrew G.; Carroll, Malcolm

We present the Quantum Computer Aided Design (QCAD) simulator that targets modeling quantum devices, particularly Si double quantum dots (DQDs) developed for quantum computing. The simulator core includes Poisson, Schrodinger, and Configuration Interaction solvers which can be run individually or combined self-consistently. The simulator is built upon Sandia-developed Trilinos and Albany components, and is interfaced with the Dakota optimization tool. It is being developed for seamless integration, high flexibility and throughput, and is intended to be open source. The QCAD tool has been used to simulate a large number of fabricated silicon DQDs and has provided fast feedback for design comparison and optimization.

More Details
Results 101–124 of 124
Results 101–124 of 124