A comparative investigation of the effects of sonic IR variables
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication Applied Physics Letters.
A theory is presented which couples a dynamical laser model to a fully microscopic calculation of scattering effects. Calculations for two optically pumped GaInNAs laser structures show how this approach can be used to analyze nonequilibrium and dynamical laser properties over a wide range of system parameters.
Proposed for publication in International Journal of Applied Ceramic Technology.
A variety of solution deposition routes have been reported for processing complex perovskite-based materials such as ferroelectric oxides and conductive electrode oxides, due to ease of incorporating multiple elements, control of chemical stoichiometry, and feasibility for large area deposition. Here, we report an extension of these methods toward long length, epitaxial film solution deposition routes to enable biaxially oriented YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO)-coated conductors for superconducting transmission wires. Recent results are presented detailing an all-solution deposition approach to YBCO-coated conductors with critical current densities J{sub c} (77 K) > 1 MA/cm{sup 2} on rolling-assisted, biaxially textured, (200)-oriented Ni-W alloy tapes. Solution-deposition methods such as this approach and those of other research groups appear to have promise to compete with vapor phase methods for superconductor electrical properties, with potential advantages for large area deposition and low cost/kA {center_dot} m of wire.
Abstract not provided.
Polymer
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Applied Physics Letters.
We report low-dimensional tunneling in an independently contacted vertically coupled quantum wire system. This nanostructure is fabricated in a high quality GaAs/AlGaAs parallel double quantum well heterostructure. Using a unique flip chip technique to align top and bottom split gates to form low-dimensional constrictions in each of the independently contacted quantum wells we explicitly control the subband occupation of the individual wires. In addition to the expected two-dimensional (2D)-2D tunneling results, we have found additional tunneling features that are related to the one-dimensional quantum wires.
The impact of 3D structure on wire array z-pinch dynamics is a topic of current interest, and has been studied by the controlled seeding of wire perturbations. First, Al wires were etched at Sandia, creating 20% radial perturbations with variable axial wavelength. Observations of magnetic bubble formation in the etched regions during experiments on the MAGPIE accelerator are discussed and compared to 3D MHD modeling. Second, thin NaF coatings of 1 mm axial extent were deposited on Al wires and fielded on the Zebra accelerator. Little or no axial transport of the NaF spectroscopic dopant was observed in spatially resolved K-shell spectra, which places constraints on particle diffusivity in dense z-pinch plasmas. Finally, technology development for seeding perturbations is discussed.
Abstract not provided.
Abstract not provided.
Proposed for publication in Journal of Electronic Packaging.
Abstract not provided.
Proposed for publication in Journal of Materials Research.
Abstract not provided.
Abstract not provided.
This paper presents a 3D facial recognition algorithm based on the Hausdorff distance metric. The standard 3D formulation of the Hausdorff matching algorithm has been modified to operate on a 2D range image, enabling a reduction in computation from O(N2) to O(N) without large storage requirements. The Hausdorff distance is known for its robustness to data outliers and inconsistent data between two data sets, making it a suitable choice for dealing with the inherent problems in many 3D datasets due to sensor noise and object self-occlusion. For optimal performance, the algorithm assumes a good initial alignment between probe and template datasets. However, to minimize the error between two faces, the alignment can be iteratively refined. Results from the algorithm are presented using 3D face images from the Face Recognition Grand Challenge database version 1.0.
Physical Chemistry Chemical Physics
Abstract not provided.
Journal of Applied Physics
Abstract not provided.
The U.S. Department of Energy's Radiological Threat Reduction (RTR) Program strives to reduce the threat of a Radiological Dispersion Device (RDD) incident that could affect U.S. interests worldwide. Sandia National Laboratories supports the RTR program on many different levels. Sandia works directly with DOE to develop strategies, including the selection of countries to receive support and the identification of radioactive materials to be protected. Sandia also works with DOE in the development of guidelines and in training DOE project managers in physical protection principles. Other support to DOE includes performing rapid assessments and providing guidance for establishing foreign regulatory and knowledge infrastructure. Sandia works directly with foreign governments to establish cooperative agreements necessary to implement the RTR Program efforts to protect radioactive sources. Once necessary agreements are in place, Sandia works with in-country organizations to implement various security related initiatives, such as installing security systems and searching for (and securing) orphaned radioactive sources. The radioactive materials of interest to the RTR program include Cobalt 60, Cesium 137, Strontium 90, Iridium 192, Radium 226, Plutonium 238, Americium 241, Californium 252, and Others. Security systems are implemented using a standardized approach that provides consistency through out the RTR program efforts at Sandia. The approach incorporates a series of major tasks that overlap in order to provide continuity. The major task sequence is to: Establish in-country contacts - integrators, Obtain material characterizations, Perform site assessments and vulnerability assessments, Develop upgrade plans, Procure and install equipment, Conduct acceptance testing and performance testing, Develop procedures, and Conduct training. Other tasks are incorporated as appropriate and commonly include such as support of reconfiguring infrastructure, and developing security plans, etc. This standardized approach is applied to specific country and regional needs. Recent examples (FY 2003-2004) include foreign missions to Lithuania, Russian Federation Navy, Russia - PNPI, Greece (joint mission with IAEA), Tanzania, Iraq, Chile, Ecuador, and Egypt. Some of the ambitions and results of the RTR program may be characterized by the successes in Lithuania, Greece, and Russia.