Publications

Results 87001–87025 of 99,299

Search results

Jump to search filters

An electron microscopy study of wear in polysilicon microelectromechanical systems

Dugger, Michael T.

Wear is a critical factor in determining the durability of microelectromechanical systems (MEMS). While the reliability of polysilicon MEMS has received extensive attention, the mechanisms responsible for this failure mode at the microscale have yet to be conclusively determined. We have used on-chip polycrystalline silicon side-wall friction MEMS specimens to study active mechanisms during sliding wear in ambient air. Worn parts were examined by analytical scanning and transmission electron microscopy, while local temperature changes were monitored using advanced infrared microscopy. Observations show that small amorphous debris particles ({approx}50-100 nm) are removed by fracture through the silicon grains ({approx}500 nm) and are oxidized during this process. Agglomeration of such debris particles into larger clusters also occurs. Some of these debris particles/clusters create plowing tracks on the beam surface. A nano-crystalline surface layer ({approx}20-200 nm), with higher oxygen content, forms during wear at and below regions of the worn surface; its formation is likely aided by high local stresses. No evidence of dislocation plasticity or of extreme local temperature increases was found, ruling out the possibility of high temperature-assisted wear mechanisms.

More Details

Tomographic spectral imaging: analysis of localized corrosion

Kotula, Paul G.; Keenan, Michael R.; Michael, Joseph R.

Microanalysis is typically performed to analyze the near surface of materials. There are many instances where chemical information about the third spatial dimension is essential to the solution of materials analyses. The majority of 3D analyses however focus on limited spectral acquisition and/or analysis. For truly comprehensive 3D chemical characterization, 4D spectral images (a complete spectrum from each volume element of a region of a specimen) are needed. Furthermore, a robust statistical method is needed to extract the maximum amount of chemical information from that extremely large amount of data. In this paper, an example of the acquisition and multivariate statistical analysis of 4D (3-spatial and 1-spectral dimension) x-ray spectral images is described. The method of utilizing a single- or dual-beam FIB (w/o or w/SEM) to get at 3D chemistry has been described by others with respect to secondary-ion mass spectrometry. The basic methodology described in those works has been modified for comprehensive x-ray microanalysis in a dual-beam FIB/SEM (FEI Co. DB-235). In brief, the FIB is used to serially section a site-specific region of a sample and then the electron beam is rastered over the exposed surfaces with x-ray spectral images being acquired at each section. All this is performed without rotating or tilting the specimen between FIB cutting and SEM imaging/x-ray spectral image acquisition. The resultant 4D spectral image is then unfolded (number of volume elements by number of channels) and subjected to the same multivariate curve resolution (MCR) approach that has proven successful for the analysis of lower-dimension x-ray spectral images. The TSI data sets can be in excess of 4Gbytes. This problem has been overcome (for now) and images up to 6Gbytes have been analyzed in this work. The method for analyzing such large spectral images will be described in this presentation. A comprehensive 3D chemical analysis was performed on several corrosion specimens of Cu electroplated with various metals. Figure 1A shows the top view of the localized corrosion region prepared for FIB sectioning. The TSI region has been coated with Pt and a trench has been milled along the bottom edge of the region, exposing it to the electron beam as seen in Figure 1B. The TSI consisted of 25 sections and was approximately 6Gbytes. Figure 1C shows several of the components rendered in 3D: Green is Cu; blue is Pb; cyan represents one of the corrosion products that contains Cu, Zn, O, S, and C; and orange represents the other corrosion product with Zn, O, S and C. Figure 1 D shows all of the component spectral shapes from the analysis. There is severe pathological overlap of the spectra from Ni, Cu and Zn as well as Pb and S. in spite of this clean spectral shapes have been extracted from the TSI. This powerful TSI technique could be applied to other sectioning methods well.

More Details

System of systems modeling and simulation

Cranwell, Robert M.; Campbell, James E.; Anderson, Dennis J.; Thompson, Bruce M.; Lawton, Craig; Shirah, Donald N.

Analyzing the performance of a complex System of Systems (SoS) requires a systems engineering approach. Many such SoS exist in the Military domain. Examples include the Army's next generation Future Combat Systems 'Unit of Action' or the Navy's Aircraft Carrier Battle Group. In the case of a Unit of Action, a system of combat vehicles, support vehicles and equipment are organized in an efficient configuration that minimizes logistics footprint while still maintaining the required performance characteristics (e.g., operational availability). In this context, systems engineering means developing a global model of the entire SoS and all component systems and interrelationships. This global model supports analyses that result in an understanding of the interdependencies and emergent behaviors of the SoS. Sandia National Laboratories will present a robust toolset that includes methodologies for developing a SoS model, defining state models and simulating a system of state models over time. This toolset is currently used to perform logistics supportability and performance assessments of the set of Future Combat Systems (FCS) for the U.S. Army's Program Manager Unit of Action.

More Details

A functional designed to include surface effects in self-consistent DFT

Proposed for publication in Physical Review Letters.

Wills, Ann E.

We design a density-functional-theory (DFT) exchange-correlation functional that enables an accurate treatment of systems with electronic surfaces. Surface-specific approximations for both exchange and correlation energies are developed. A subsystem functional approach is then used: an interpolation index combines the surface functional with a functional for interior regions. When the local density approximation is used in the interior, the result is a straightforward functional for use in self-consistent DFT. The functional is validated for two metals (Al, Pt) and one semiconductor (Si) by calculations of (i) established bulk properties (lattice constants and bulk moduli) and (ii) a property where surface effects exist (the vacancy formation energy). Good and coherent results indicate that this functional may serve well as a universal first choice for solid-state systems and that yet improved functionals can be constructed by this approach.

More Details

Robust, stable time-domain methods for solving MPDEs of fast/slow systems

Coffey, Todd S.; Hutchinson, Scott A.

In this paper, we explore the stability properties of time-domain numerical methods for multitime partial differential equations (MPDEs) in detail. We demonstrate that simple techniques for numerical discretization can lead easily to instability. By investigating the underlying eigenstructure of several discretization techniques along different artificial time scales, we show that not all combinations of techniques are stable. We identify choices of discretization method and step size, along fast and slow time scales, that lead to robust, stable time-domain integration methods for the MPDE. One of our results is that applying overstable methods along one time-scale can compensate for unstable discretization along others. Our novel integration schemes bring robustness to time-domain MPDE solution methods, as we demonstrate with examples.

More Details

Investigation of domain size in polymer membranes using double quantum filtered spin diffusion MAS NMR

Proposed for publication in Macromolecules.

Pautz, Shawn D.; Drumm, Clifton R.

Solid-state {sup 1}H magic angle spinning (MAS) NMR was used to investigate sulfonated Diels-Alder poly(phenlylene) polymer membranes. Under high spinning speed {sup 1}H MAS conditions, the proton environments of the sulfonic acid and phenylene polymer backbone are resolved. A double-quantum (DQ) filter using the rotor-synchronized back-to-back (BABA) NMR multiple-pulse sequence allowed the selective suppression of the sulfonic proton environment in the {sup 1}H MAS NMR spectra. This DQ filter in conjunction with a spin diffusion NMR experiment was then used to measure the domain size of the sulfonic acid component within the membrane. In addition, the temperature dependence of the sulfonic acid spin-spin relaxation time (T{sub 2}) was determined, providing an estimate of the activation energy for the proton dynamics of the dehydrated membrane.

More Details

Speciation in the AlCl3/SO2Cl2 catholyte system

Proposed for publication in JACS.

Boyle, Timothy

The fundamental chemical behavior of the AlCl{sub 3}/SO{sub 2}Cl{sub 2} catholyte system was investigated using {sup 27}Al NMR spectroscopy, Raman spectroscopy, and single-crystal X-ray diffraction. Three major Al-containing species were found to be present in this catholyte system, where the ratio of each was dependent upon aging time, concentration, and/or storage temperature. The first species was identified as [Cl{sub 2}Al({mu}-Cl)]{sub 2} in equilibrium with AlCl{sub 3}. The second species results from the decomposition of SO{sub 2}Cl{sub 2} which forms Cl{sub 2}(g) and SO{sub 2}(g). The SO{sub 2}(g) is readily consumed in the presence of AlCl{sub 3} to form the crystallographically characterized species [Cl{sub 2}Al({mu}-O{sub 2}SCl)]{sub 2} (1). For 1, each Al is tetrahedrally (T{sub d}) bound by two terminal Cl and two {mu}-O ligands whereas, the S is three-coordinated by two {mu}-O ligands and one terminal Cl. The third molecular species also has T{sub d}-coordinated Al metal centers but with increased oxygen coordination. Over time it was noted that a precipitate formed from the catholyte solutions. Raman spectroscopic studies show that this gel or precipitate has a component that was consistent with thionyl chloride. We have proposed a polymerization scheme that accounts for the precipitate formation. Further NMR studies indicate that the precipitate is in equilibrium with the solution.

More Details

Diode-bar side-pumping of double-clad fibers

Proposed for publication in Photonics West.

Koplow, Jeffrey

We demonstrate direct diode-bar side pumping of a Yb-doped fiber laser using embedded-mirror side pumping (EMSP). In this method, the pump beam is launched by reflection from a micro-mirror embedded in a channel polished into the inner cladding of a double-clad fiber (DCF). The amplifier employed an unformatted, non-lensed, ten-emitter diode bar (20 W) and glass-clad, polarization-maintaining, large-mode-area fiber. Measurements with passive fiber showed that the coupling efficiency of the raw diode-bar output into the DCF (ten launch sites) was {approx}84%; for comparison, the net coupling efficiency using a conventional, formatted, fiber-coupled diode bar is typically 50-70%, i.e., EMSP results in a factor of 2-3 less wasted pump power. The slope efficiency of the side-pumped fiber laser was {approx}80% with respect to launched pump power and 24% with respect to electrical power consumption of the diode bar; at a fiber-laser output power of 7.5 W, the EMSP diode bar consumed 41 W of electrical power (18% electrical-to-optical efficiency). When end pumped using a formatted diode bar, the fiber laser consumed 96 W at 7.5 W output power, a factor of 2.3 less efficient, and the electrical-to-optical slope efficiency was lower by a factor of 2.0. Passive-fiber measurements showed that the EMSP alignment sensitivity is nearly identical for a single emitter as for the ten-emitter bar. EMSP is the only method capable of directly launching the unformatted output of a diode bar directly into DCF (including glass-clad DCF), enabling fabrication of low-cost, simple, and compact, diode-bar-pumped fiber lasers and amplifiers.

More Details

As symmetric spreading in highly advective, disordered environments

Proposed for publication in Physical Review Letters.

Carpenter, John H.

Spreading of bacteria in a highly advective, disordered environment is examined. Predictions of super-diffusive spreading for a simplified reaction-diffusion equation are tested. Concentration profiles display anomalous growth and super-diffusive spreading. A perturbation analysis yields a crossover time between diffusive and super-diffusive behavior. The time's dependence on the convection velocity and disorder is tested. Like the simplified equation, the full linear reaction-diffusion equation displays super-diffusive spreading perpendicular to the convection. However, for mean positive growth rates the full nonlinear reaction-diffusion equation produces symmetric spreading with a Fisher wavefront, whereas net negative growth rates cause an asymmetry, with a slower wavefront velocity perpendicular to the convection.

More Details
Results 87001–87025 of 99,299
Results 87001–87025 of 99,299