Publications

Results 86326–86350 of 99,299

Search results

Jump to search filters

Mid-ultraviolet light-emitting diode detects dipicolinic acid

Proposed for publication in Applied Spectroscopy.

Crawford, Mary H.; Fischer, Arthur J.; Allerman, A.A.; Bogart, Katherine H.A.

Dipicolinic acid (DPA, 2,6-pyridinedicarboxylic acid) is a substance uniquely present in bacterial spores such as that from anthrax (B. anthracis). It is known that DPA can be detected by the long-lived fluorescence of its terbium chelate; the best limit of detection (LOD) reported thus far using a large benchtop gated fluorescence instrument using a pulsed Xe lamp is 2 nM. We use a novel AlGaN light-emitting diode (LED) fabricated on a sapphire substrate that has peak emission at 291 nm. Although the overlap of the emission band of this LED with the absorption band of Tb-DPA ({lambda}{sub max} doublet: 273, 279 nm) is not ideal, we demonstrate that a compact detector based on this LED and an off-the-shelf gated photodetection module can provide an LOD of 0.4 nM, thus providing a basis for convenient early warning detectors.

More Details

Measurement of temperature-dependent defect diffusion in proton-irradiated GaN(Mg, H)

Proposed for publication in the Journal of Applied Physics.

Fleming, R.M.

Deuterated p-type GaN(Mg,{sup 2}H) films were irradiated at room temperature with 1 MeV protons to create native point defects with a concentration approximately equal to the Mg doping (5 x 10{sup 19} cm{sup -3}). The samples were then annealed isothermally at a succession of temperatures while monitoring the infrared absorption due to the H local mode of the MgH defect. As the samples were annealed, the MgH absorption signal decreased and a new mode at slightly higher frequency appeared, which has been associated with the approach of a mobile nitrogen interstitial. We used the time dependence of the MgH absorption to obtain a diffusion barrier of the nitrogen interstitial in p-type GaN of 1.99 eV. This is in good agreement with theoretical calculations of nitrogen interstitial motion in GaN.

More Details

Spectroscopic modeling and comparison of radiation from X-pinches and wire arrays produced on the 1 MA pulsed power generator at UNR

Coverdale, Christine A.; Jones, Brent M.; Deeney, Christopher D.

X-ray spectra and images from Al (with 5% of Mg and some with 5% of NaF dopants) and Cu (pure and with 4% of Ni) wire arrays and X-pinches were accumulated in experiments on the 1 MA pulsed power generator at UNR. In particular, axially and radially resolved K-shell X-ray spectra of Al, Mg, and Na and L-shell X-ray spectra of Cu and Ni were recorded by a KAP crystal (in a spectral region from 6 to 15 Aring) through different slits from 50 mum to 3 mm. In addition, spatially integrated harder X-ray spectra were monitored by a LiF crystal. Non-LTE kinetic models of Al, Mg, and Na, and of Cu and Ni provided spatially resolved electron temperatures and densities for experiments with Al and Cu loads, respectively. Advantages of using alloys and dopants with small concentrations for spectroscopic plasma diagnostics will be presented. Dependence of the plasma's spatial structures, temperatures, and densities from wire material and load configurations, sizes, and masses will be discussed .

More Details

The appropriate and effective use of security technologies in U.S. schools : a guide for schools and law enforcement agencies

Brooks, Scott; Green, Mary W.

The purpose of this report is to provide school administrators with the ability to determine their security system requirements, so they can make informed decisions when working with vendors and others to improve their security posture. This is accomplished by (1) explaining a systems-based approach to defining the objectives and needs of the system, and (2), providing information on the ability of common components (sensors, cameras, metal detectors, etc) to achieve those objectives, in an effectively integrated system.

More Details

Transportation of Hazardous Evidentiary Material

Osborn, Douglas

This document describes the specimen and transportation containers currently available for use with hazardous and infectious materials. A detailed comparison of advantages, disadvantages, and costs of the different technologies is included. Short- and long-term recommendations are also provided.3 DraftDraftDraftExecutive SummaryThe Federal Bureau of Investigation's Hazardous Materials Response Unit currently has hazardous material transport containers for shipping 1-quart paint cans and small amounts of contaminated forensic evidence, but the containers may not be able to maintain their integrity under accident conditions or for some types of hazardous materials. This report provides guidance and recommendations on the availability of packages for the safe and secure transport of evidence consisting of or contaminated with hazardous chemicals or infectious materials. Only non-bulk containers were considered because these are appropriate for transport on small aircraft. This report will addresses packaging and transportation concerns for Hazardous Classes 3, 4, 5, 6, 8, and 9 materials. If the evidence is known or suspected of belonging to one of these Hazardous Classes, it must be packaged in accordance with the provisions of 49 CFR Part 173. The anthrax scare of several years ago, and less well publicized incidents involving unknown and uncharacterized substances, has required that suspicious substances be sent to appropriate analytical laboratories for analysis and characterization. Transportation of potentially hazardous or infectious material to an appropriate analytical laboratory requires transport containers that maintain both the biological and chemical integrity of the substance in question. As a rule, only relatively small quantities will be available for analysis. Appropriate transportation packaging is needed that will maintain the integrity of the substance, will not allow biological alteration, will not react chemically with the substance being shipped, and will otherwise maintain it as nearly as possible in its original condition.The recommendations provided are short-term solutions to the problems of shipping evidence, and have considered only currently commercially available containers. These containers may not be appropriate for all cases. Design, testing, and certification of new transportation containers would be necessary to provide a container appropriate for all cases.Table 1 provides a summary of the recommendations for each class of hazardous material.Table 1: Summary of RecommendationsContainerCost1-quart paint can with ArmlockTM seal ringLabelMaster(r)%242.90 eachHazard Class 3, 4, 5, 8, or 9 Small ContainersTC Hazardous Material Transport ContainerCurrently in Use4 DraftDraftDraftTable 1: Summary of Recommendations (continued)ContainerCost55-gallon open or closed-head steel drumsAll-Pak, Inc.%2458.28 - %2473.62 eachHazard Class 3, 4, 5, 8, or 9 Large Containers95-gallon poly overpack LabelMaster(r)%24194.50 each1-liter glass container with plastic coatingLabelMaster(r)%243.35 - %243.70 eachHazard Class 6 Division 6.1 Poisonous by Inhalation (PIH) Small ContainersTC Hazardous Material Transport ContainerCurrently in Use20 to 55-gallon PIH overpacksLabelMaster(r)%24142.50 - %24170.50 eachHazard Class 6 Division 6.1 Poisonous by Inhalation (PIH) Large Containers65 to 95-gallon poly overpacksLabelMaster(r)%24163.30 - %24194.50 each1-liter transparent containerCurrently in UseHazard Class 6 Division 6.2 Infectious Material Small ContainersInfectious Substance ShipperSource Packaging of NE, Inc.%24336.00 eachNone Commercially AvailableN/AHazard Class 6 Division 6.2 Infectious Material Large ContainersNone Commercially Available N/A5

More Details

Anion adsorption induced reversal of coherency strain

Proposed for publication in Physical Review Letters.

Floro, Jerrold A.; Seel, Steven C.; Vasiljevic, Natasa V.

Experimental results are presented for stress evolution, in vacuum and electrolyte, for the first monolayer of Cu on Au(111). In electrolyte the monolayer is pseudomorphic and the stress-thickness change is -0.60 N/m, while conventional epitaxy theory predicts a value of +7.76 N/m. In vacuum, the monolayer is incoherent with the underlying gold. Using a combination of first-principles based calculations and molecular dynamic simulations we analyzed these results and demonstrate that in electrolyte, overlayer coherency is maintained owing to anion adsorption.

More Details

Density functional theory study of transition metal porphine adsorption on gold surface and electric field induced conformation changes

Proposed for publication in the Journal of the American Chemical Society.

Rempe, Susan; Schultz, Peter A.; Chandross, Michael E.

We apply density functional theory (DFT) and the DFT+U technique to study the adsorption of transition metal porphine molecules on atomistically flat Au(111) surfaces. DFT calculations using the Perdew?Burke?Ernzerhof exchange correlation functional correctly predict the palladium porphine (PdP) low-spin ground state. PdP is found to adsorb preferentially on gold in a flat geometry, not in an edgewise geometry, in qualitative agreement with experiments on substituted porphyrins. It exhibits no covalent bonding to Au(111), and the binding energy is a small fraction of an electronvolt. The DFT+U technique, parametrized to B3LYP-predicted spin state ordering of the Mn d-electrons, is found to be crucial for reproducing the correct magnetic moment and geometry of the isolated manganese porphine (MnP) molecule. Adsorption of Mn(II)P on Au(111) substantially alters the Mn ion spin state. Its interaction with the gold substrate is stronger and more site-specific than that of PdP. The binding can be partially reversed by applying an electric potential, which leads to significant changes in the electronic and magnetic properties of adsorbed MnP and 0.1 {angstrom} changes in the Mn-nitrogen distances within the porphine macrocycle. We conjecture that this DFT+U approach may be a useful general method for modeling first-row transition metal ion complexes in a condensed-matter setting.

More Details

Emissivity-correcting near-UV pyrometry for group-III nitride OMVPE

Proposed for publication in the Journal of Crystal Growth.

Creighton, James R.; Koleske, Daniel; Mitchell, Christine C.

We developed a pyrometer that operates near the high-temperature bandgap of GaN, thus solving the transparency problem once a {approx} 1 {micro}m thick GaN epilayer has been established. The system collects radiation in the near-UV (380-415 nm) and has an effective detection wavelength of {approx}405 nm. By simultaneously measuring reflectance we also correct for emissivity changes when films of differing optical properties (e.g. AlGaN) are deposited on the GaN template. We recently modified the pyrometer hardware and software to enable measurements in a multiwafer Veeco D-125 OMVPE system. A method of synchronizing and indexing the detection system with the wafer platen was developed; so signals only from the desired wafer(s) could be measured, while rejecting thermal emission signals from the platen. Despite losses in optical throughput and duty cycle we are able to maintain adequate performance from 700 to 1100 C.

More Details

A model for ablated plasma width applied to peak X-ray power scaling for Z-pinch wire array implosions

Stygar, William A.; Cuneo, Michael E.

We present the solution of a 1D radial MHD model of the plasma ablated from multi-MA wire array implosions extending a recently obtained steady state solution [J.P. Chittenden, et al. Phys. Plasmas 11, 1118 (2004)] to a driving current that is exponential in time. We obtain a solution for the flow in almost analytical form by reducing the partial differential equations to a set of ordinary differential equations with a single parameter. We compute the mass weighted density width, and find the regime in which it agrees to a few percent with that of a simpler approximation to the ablated plasma flow, for which the driving current is linear in time, and the flow velocity constant. Assuming that the density width at the end of the ablation period is proportional to width of the plasma sheath at stagnation, we obtain a scaling relationship for peak X-ray power. We compare this relationship to experimental peak X-ray powers for tungsten wire arrays on the Z pulsed power generator of Sandia National Laboratories, and to previously proposed scaling hypotheses. We also use this scaling to project peak X-ray powers on ZR, a higher peak current modification of Z, presently under design.

More Details

The development of circuit models for ZR

Harjes, Henry C.; Struve, Kenneth

Summary from only given. The capabilities of the Z accelerator will be significantly enhanced by the Z Refurbishment (ZR) project [McDaniel DH, 2002]. The performance of a single ZR module is currently being characterized in the pre-production engineering evaluation test bed, Z20 [Lehr, JM, 2003]. Z20 is thoroughly diagnosed so that electrical performance of the module can be established. Circuit models of Z20 have been developed and validated in both Screamer [1985] and Bertha [1989] circuit codes. For the purposes of predicting ZR performance, a full ZR circuit model has also been developed in Bertha. The full ZR model (using operating parameters demonstrated on Z20) indicates that the required 26 MA, 100 ns implosion time, output load current pulse will be achieved on ZR. In this paper, the electrical characterization of Z20 and development of the single module circuit models will be discussed in detail. The full ZR model will also be discussed and the results of several system studies conducted to predict ZR performance will be presented.

More Details
Results 86326–86350 of 99,299
Results 86326–86350 of 99,299