Demonstration of Safety in Nuclear Materials Transport
Abstract not provided.
Abstract not provided.
Abstract not provided.
Combustion and Flame or International Journal of Engine Research
Abstract not provided.
Proposed for publication in Sensors.
Some thermocouple experiments were carried out in order to obtain sensitivity of thermocouple readings to fluctuations in flames and to determine if the average thermocouple reading was representative of the local volume temperature for fluctuating flames. The thermocouples considered were an exposed junction thermocouple and a fully sheathed thermocouple with comparable time constants. Either the voltage signal or indicated temperature for each test was recorded at sampling rates between 300-4,096 Hz. The trace was then plotted with respect to time or sample number so that time variation in voltage or temperature could be visualized and the average indicated temperature could be determined. For experiments where high sampling rates were used, the signal was analyzed using Fast Fourier Transforms (FFT) to determine the frequencies present in the thermocouple signal. This provided a basic observable as to whether or not the probe was able to follow flame oscillations. To enhance oscillations, for some experiments, the flame was forced. An analysis based on thermocouple time constant, coupled with the transfer function for a sinusoidal input was tested against the experimental results.
Abstract not provided.
Abstract not provided.
Proposed for publication in the Journal of Materials Chemistry.
The micro- to nano-sized nature of layered materials, particularly characteristic of naturally occurring clay minerals, limits our ability to fully interrogate their atomic dispositions and crystal structures. The low symmetry, multicomponent compositions, defects, and disorder phenomena of clays and related phases necessitate the use of molecular models and modern simulation methods. Computational chemistry tools based on classical force fields and quantum-chemical methods of electronic structure calculations provide a practical approach to evaluate structure and dynamics of the materials on an atomic scale. Combined with classical energy minimization, molecular dynamics, and Monte Carlo techniques, quantum methods provide accurate models of layered materials such as clay minerals, layered double hydroxides, and clay-polymer nanocomposites.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Engineering with Computers
Abstract not provided.
Proposed for publication in the ACM SIGOPS Operating System Review.
Abstract not provided.
Abstract not provided.
Abstract not provided.