Publications

Results 92851–92875 of 96,771

Search results

Jump to search filters

Automatic design of 3-d fixtures and assembly pallets

Brost, Randolph B.

This paper presents an implemented algorithm that automatically designs fixtures and assembly pallets to hold three-dimensional parts. The designed fixtures rigidly constrain and locate the part, obey task constraints, are robust to part shape variations, are easy to load, and are economical to produce. The algorithm is guaranteed to find the global optimum solution that satisfies these and other pragmatic conditions. We present the results of the algorithm applied to several practical manufacturing problems. For these complex problems the algorithm typically returns initial high-quality fixture designs in less than two minutes, and identifies th global optimum design in just over an hour.

More Details

Micro-machined heat pipes in silicon MCM substrates

Benson, D.A.

Multichip modules (MCMs) containing power components need a substrate with excellent heat spreading capability both to avoid hot spots and to move dissipated heat toward the system heat sinks. Polycrystalline diamond is an excellent MCM heat spreading substrate but remains several orders of magnitude too expensive and somewhat more difficult to process than conventional mother-board materials. Today`s power MCMs concentrate on moderately priced silicon wafers and aluminum nitride ceramic with their improved thermal conductivity and good thermal expansion match to power semiconductor components, in comparison to traditional alumina and printed wiring board materials. However, even silicon and AlN substrates are challenged by designers` thermal needs. We report on the fabrication of micro-heat pipes embedded in silicon MCM substrates (5{times}5 cm) by the use of micromachined capillary wick structures and hermetic micro-cavities. This passive microstructure results in more than a 5 times improvement in heat spreading capability of the silicon MCM substrate over a large range of power densities and operating temperatures as compared with silicon alone. Thus diamond-like cooling is possible at silicon prices.

More Details

Characterization and assessment of HTML style guides

Ratner, J.

This paper describes a study in which HTML style guides were characterized, compared to established HCI style guides, and evaluated against findings from HCI reviews of web paces and applications. Findings showed little consistency among the 21 HTML style guides assessed, with 75% of recommendations appearing in only one style guide. While there was some overlap, only 20% of HTML relevant recommendations from established style guides were found in HTML style guides. HTML style guides emphasized common look and feel, information display, and navigation issues with little mention of many issues prominent in established style guides such as help, message boxes and data entry. This difference is reinforced by other results showing that HTML style guides addressed concerns of web information content pages with much greater success than web-based applications. It is concluded that while the WWW represents a unique HCI environment, development of HTML style guides has been less rigorous, with issues associated with web-based applications largely ignored.

More Details

Vibration control for precision manufacturing using piezoelectric actuators

Martinez, D.

Piezoelectric actuators provide high frequency, force, and stiffness capabilities along with reasonable Stroke limits, all of which can be used to increase performance levels in precision manufacturing systems. This paper describes two examples of embedding piezoelectric actuators in structural components for vibration control. One example involves suppressing the self excited chatter phenomenon in the metal cutting process of a milling machine and the other involves damping vibrations induced by rigid body stepping of a photolithography platen. Finite element modeling and analyses are essential for locating and sizing the actuators and permit further simulation studies of the response of the dynamic system. Experimental results are given for embedding piezoelectric actuators in a cantilevered bar configuration, which was used as a surrogate machine tool structure. These results are incorporated into a previously developed milling process simulation and the effect of the control on the cutting process stability diagram is quantified. Experimental results are also given for embedding three piezoelectric actuators in a surrogate photolithography platen to suppress vibrations. These results demonstrate the potential benefit that can be realized by applying advances from the field of adaptive structures to problems in precision manufacturing.

More Details

Plasma chemistry dependent ECR etching of GaN

Shul, Randy J.

Electron cyclotron resonance (ECR) etching of GaN in Cl{sub 2}/H{sub 2}/Ar, C1{sub 2}/SF{sub 6}/Ar, BCl{sub 3}/H{sub 2}/Ar and BCl{sub 3}/SF{sub 6}/Ar plasmas is reported as a function of percent H{sub 2} and SF{sub 6}. GaN etch rates were found to be 2 to 3 times greater in Cl{sub 2}/H{sub 2}/Ar discharges than in BCl{sub 3}/H{sub 2}/Ar discharges independent of the H{sub 2} concentration. In both discharges, the etch rates decreased as the H{sub 2} concentration increased above 10%. When SF{sub 6} was substituted for H{sub 2}, the GaN etch rates in BCl{sub 3}-based plasmas were greater than those for the Cl{sub 2}-based discharges as the SF{sub 6} concentration increased. GaN etch rates were greater in Cl{sub 2}/H{sub 2}/Ar discharges as compared to Cl{sub 2}SF{sub 6}/Ar discharges whereas the opposite trend was observed for BCl{sub 3}-based discharges. Variations in surface morphology and near-surface stoichiometry due to plasma chemistries were also investigated using atomic force microscopy and Auger spectroscopy, respectively.

More Details

Ring-field EUVL camera with large Etendu

Sweatt, W.C.

A ``debris-less`` laser-plasma source (LPS) of extreme-UV radiation has been developed by Kubiak, et al. This is a huge step forward for the extreme-UV lithography program (EUVL) because it will extend the life of the collecting mirrors that face the source. This source has a 300-{mu}m diameter (D source) which is larger than the earlier, {approximately}75-{mu}m diameter plasma balls created on metal targets. The larger source size requires that the Etendu of the system must also be larger if the source radiation is to be used efficiently. A family of 4-mirror, scanning, ring-field lithography cameras has been designed that can be efficiently coupled to a ``debris-less`` LPS. The most promising design has a 0.085-numerical aperture (NA{sub camera}) for printing {approx} 100-nm features. At the image plane it has 13 nm of distortion and a 98% Strehl ratio across its 7-mm wide ring-field ({Delta}r).

More Details

Investigation of a steam generator tube rupture sequence using VICTORIA

Bixler, Nathan E.

VICTORIA-92 is a mechanistic computer code for analyzing fission product behavior within the reactor coolant system (RCS) during a severe reactor accident. It provides detailed predictions of the release of radionuclides and nonradioactive materials from the core and transport of these materials within the RCS. The modeling accounts for the chemical and aerosol processes that affect radionuclide behavior. Coupling of detailed chemistry and aerosol packages is a unique feature of VICTORIA; it allows exploration of phenomena involving deposition, revaporization, and re-entrainment that cannot be resolved with other codes. The purpose of this work is to determine the attenuation of fission products in the RCS and on the secondary side of the steam generator in an accident initiated by a steam generator tube rupture (SGTR). As a class, bypass sequences have been identified in NUREG-1150 as being risk dominant for the Surry and Sequoyah pressurized water reactor (PWR) plants.

More Details

A framework for geometric reasoning about tools in assembly

Wilson, R.H.

When assembling a product, humans, robots, and other automation employ a variety of tools to manipulate, attach, and test parts and subassemblies. This paper proposes a framework lo represent and reason about geometric accessibility constraints for a wide variety of assembly tools. Central to the framework is a use volume encoding a minimum space that must be free in an assembly state to apply a given tool, and placement constraints on where that volume must be placed relative to the parts on which the tool acts. Determining whether a tool can be applied in a given assembly state is an instance of the FINDPLACE problem. In addition, we present more efficient methods lo integrate the framework into assembly planning. For tools that are applied either before or after their target parts are mated, one method preprocesses a single tool application for all possible states of assembly of a product. For tools applied after their target parts are mated, a complementary method guarantees polynomial-time assembly planning. We describe experiments with an initial implementation of the framework and a library of seven tools.

More Details

Closed form and geometric algorithms for real-time control of an avatar

Semwall, S.K.

In a virtual environment with multiple participants, it is necessary that the user`s actions be replicated by synthetic human forms. Whole body digitizers would be the most realistic solution for capturing the individual participant`s human form, however the best of the digitizers available are not interactive and are therefore not suitable for real-time interaction. Usually, a limited number of sensors are used as constraints on the synthetic human form. Inverse kinematics algorithms are applied to satisfy these sensor constraints. These algorithms result in slower interaction because of their iterative nature, especially when there are a large number of participants. To support real-time interaction in a virtual environment, there is a need to generate closed for solutions and fast searching algorithms. In this paper, a new closed form solution for the arms (and legs) is developed using two magnetic sensors. In developing this solution, we use the biomechanical relationship between the lower arm and the upper arm to provide an analytical, non-iterative solution, We have also outlined a solution for the whole human body by using up to ten magnetic sensors to break the human skeleton into smaller kinematic chains. In developing our algorithms, we use the knowledge of natural body postures to generate faster solutions for real-time interaction.

More Details

Using depleted uranium to shield vitrified high-level waste packages

Yoshimura, Richard H.

The underlying report for this paper evaluates options for using depleted uranium as shielding materials for transport systems for disposal of vitrified high-level waste (VHLW). In addition, economic analyses are presented to compare costs associated with these options to costs, associated with existing and proposed storage, transport, and diposal capabilities. A more detailed evaluation is provided elsewhere. (Yoshimura et al. 1995.)

More Details

Core damage frequency prespectives for BWR 3/4 and Westinghouse 4-loop plants based on IPE results

Camp, Susan E.

This paper discusses the core damage frequency (CDF) insights gained by analyzing the results of the Individual Plant Examinations (IPES) for two groups of plants: boiling water reactor (BWR) 3/4 plants with Reactor Core Isolation Cooling systems, and Westinghouse 4-loop plants. Wide variability was observed for the plant CDFs and for the CDFs of the contributing accident classes. On average, transients-with loss of injection, station blackout sequences, and transients with loss of decay heat removal are important contributors for the BWR 3/4 plants, while transients, station blackout sequences, and loss-of-coolant accidents are important for the Westinghouse 4-loop plants. The key factors that contribute to the variability in the results are discussed. The results are often driven by plant-specific design and operational characteristics, but differences in modeling approaches are also important for some accident classes.

More Details

A successful effort to involve stakeholders in a facility siting decision using LIPS with stakeholder involvement

Conway, R.

Local public opposition to federal bureaucratic decisions has resulted in public agencies rethinking the role of stakeholders in decision making. Efforts to include stakeholders directly in the decision-making process are on the increase. Unfortunately, many attempts to involve members of the public in decisions involving complex technical issues have failed. A key problem has been defining a meaningful role for the public in the process of arriving at a technical decision. This paper describes a successful effort by Sandia National Laboratories (SNL) in New Mexico to involve stakeholders in an important technical decision associated with its Environmental Restoration (ER) Project. The decision was where to locate a Corrective Action Management Unit (CAMU), a facility intended to consolidate and store wastes generated from the cleanup of hazardous waste sites. A formal priority setting process known as the Laboratory Integration Prioritization System (LIPS) was adapted to provide an approach for involving the public. Although rarely applied to stakeholder participation, the LIPS process proved surprisingly effective. It produced a consensus over a selected site and enhanced public trust and understanding of Project activities.

More Details

System certification progress in concept recognition in IAEA regulation

Luna, Robert E.

System Certification is a regulatory concept which is intended to expand the scope of radioactive material transport regulations by allowing alternative means for proving compliance with the requisite standards of safety set out in transport regulations. In practice it may allow more stringent requirements in one aspect of the regulations to be substituted for less stringent application in other areas so long as the safety standard provided by regulation is preserved. The concept is widely perceived as the imposition of operational controls in exchange for relaxation of packaging standards, but that is only one possibility in the spectrum of potential actions under a System Certification provision in IAEA or national regulations.

More Details

High voltage high brightness electron accelerator with MITL voltage adder coupled to foilless diode

Mazarakis, Michael G.

The design and analysis of a high brightness electron beam experiment under construction at Sandia National Laboratory is presented. The beam energy is 12 MeV, the current 35-40 kA, the rms radius 0.5 mm, and the pulse duration FWHM 40 ns. The accelerator is SABRE a pulsed inductive voltage adder, and the electron source is a magnetically immersed foilless diode. This experiment has as its goal to stretch the technology to the edge and produce the highest possible electron current in a submillimeter radius beam.

More Details

Design control and scientific investigations: Is there any linkage?

Richards, Robert R.

The quality assurance requirements that apply to the effort to achieve safe transportation, storage, and disposal of high-level nuclear waste specify that ``design control`` be applied to design activities. That effort also involves extensive scientific investigation activities to, among other things, develop information that may be used in engineering design activities. Individuals who are charged with the implementation of such quality assurance requirements have come to a variety of conclusions about whether there is any firm linkage between design control and the conduct of scientific investigations. This paper contends that there is a reasonable and necessary linkage between ``design control`` and scientific activities, though not a connection that has traditionally been made and not one addressed in the QA standards for radioactive waste management programs.

More Details

Ion implantation doping and high temperature annealing of GaN

Zolper, J.C.

The III-V nitride-containing semiconductors InN, GaN, and AIN and their ternary alloys are the focus of extensive research for application to visible light emitters and as the basis for high temperature electronics. Recent advances in ion implantation doping of GaN and studies of the effect of rapid thermal annealing up to 1100{degrees}C are making new device structures possible. Both p- and n-type implantation doping of GaN has been achieved using Mg co-implanted with P for p-type and Si-implantation for n-type. Electrical activation was achieved by rapid thermal anneals in excess of 1000{degrees}C. Atomic force microscopy studies of the surface of GaN after a series of anneals from 750 to 1100{degrees}C shows that the surface morphology gets smoother following anneals in Ar or N{sub 2}. The photoluminescence of the annealed samples also shows enhanced bandedge emission for both annealing ambients. For the deep level emission near 2.2 eV, the sample annealed in N{sub 2} shows slightly reduced emission while the sample annealed in Ar shows increased emission. These annealing results suggest a combination of defect interactions occur during the high temperature processing.

More Details

Renewable: A key component of our global energy future

Hartley, D.

Inclusion of renewable energy sources in national and international energy strategies is a key component of a viable global energy future. The global energy balance is going to shift radically in the near future brought about by significant increases in population in China and India, and increases in the energy intensity of developing countries. To better understand the consequences of such global shifts in energy requirements and to develop appropriate energy strategies to respond to these shifts, we need to look at the factors driving choices among supply options by geopolitical consumers and the impact these factors can have on the future energy mix.

More Details

Velocity matched electrode structures on doped semiconductors for large bandwidth optoelectronic modulators

Hietala, Vincent M.

High-speed optoelectronic modulators are becoming increasingly important in microwave applications. These devices are necessarily electrically large and hence require velocity matching of the microwave signal to the light. A design methodology for velocity matched electrodes on doped semiconductor devices will be presented. As an example of a successful device design, experimental results on a >10 bandwidth high-efficiency (>15{degrees}/V/mm) Mach Zehnder interferometer will be presented.

More Details

Inside Sandia

Goetsch, Robert S.

Articles in this issue include ``Molten salt corrosion testing,`` ``Pulsed ion beams for thermal surface treatment: Improved corrosion, wear, and hardness properties at low cost,`` ``Unmasking hidden armaments: Superconducting gravity sensor could find underground weapons, bunkers,`` ``Charbroiled burgers, heterocyclic amines, and cancer: Molecular modeling identifies dangerous mutagens,`` ``Revolutionary airbag offers increased safety options,`` ``EcoSys{sup TM}: an expert system for `Green Design` ``, ``Sandia, salt, and oil: Labs` diagnostics and analysis help maintain vital US oil reserve,`` and ``Automated fixture design speeds development for prototypes and production``.

More Details

Advanced drilling systems

Pierce, K.G.

Drilling is ubiquitous in oil, gas, geothermal, minerals, water well, and mining industries. Drilling and well completion account for 25% to 50% of the cost of producing power from geothermal energy. Reduced drilling costs will reduce the cost of electricity produced from geothermal resources. Undoubtedly, there are concepts for advanced drilling systems that have yet to be studied. However, the breadth and depth of previous efforts in this area almost guarantee that any new efforts will at least initially build on an idea or a variation of an idea that has already been investigated. Therefore, a review of previous efforts, coupled with a characterization of viable advanced drilling systems and the current state of technology as it applies to those systems, provide the basis for this study.

More Details

Ionic modeling of lithium manganese spinel materials for use in rechargeable batteries

Cygan, Randall T.

In order to understand and evaluate materials for use in Li ion rechargeable battery electrodes, we have modeled the crystal structures of various Mn oxide and Li Mn oxide compounds. We have modeled the MnO{sub 2} polymorphs and several spinels with intermediate compositions based on the amount of Li inserted into the tetrahedral site. 3-D representations of the structures provide a basis for identifying site occupancies, coordinations, Mn valence, order-disorder, and potentially new dopants for enhanced cathode behavior. XRD simulations of the crystal structures provide good agreement with observed patterns for synthesized samples. Ionic modeling of these materials consists of an energy minimization approach using Coulombic, repulsive, and van der Waals interactions. Modeling using electronic polarizabilities (shell model) allows a systematic analysis of changes in lattice energy, cell volume, and the relative stability of doped structures using ions such as Al, Ti, Ni, and Co.

More Details

Environmentally friendly polysilane photoresists

Beach, J.V.

Several novel polysilanes synthesized by the free-radical hydrosilation of oligomeric polyphenylsilane or poly(p-tert- butylphenylsilane) were examined for lithographic behavior. This recently developed route into substituted polysilanes has allowed for the rational design of a variety of polysilanes with a typical chemical properties such as alcohol and aqueous base solubility. Many of the polysilane resists made could be developed in aqueous sodium carbonate and bicarbonate solutions. These materials represent environmentally friendly polysilane resists in both their synthesis and processing.

More Details

Instrumentation advances in emissions characterization from propellant/explosive combustion

Einfeld, Wayne E.

Results from a chamber study to characterize emissions from combustion of selected pure energetic materials are presented in this paper. The study was carried out as a part of a comprehensive air pathways risk assessment for a propellant and explosive manufacturing facility that engages in open burning methods for manufacturing waste disposal. Materials selected for emissions characterization in this study included both aluminized and non-aluminized composite propellant, a double base propellant and a plastic bonded explosive. Combustion tests in a specialized chamber revealed very low emissions for gaseous products of incomplete combustion such as carbon monoxide and nitrogen oxides. Analysis of gaseous and aerosol emission products for a pre-selected target analyte list that included both volatile and semi-volatile organics revealed either low or non-detectable emissions for the four energetic types tested. Hydrogen chloride was detected as a major emission product from propellants containing ammonium perchlorate. Results from this work reveal that about one-half of the chlorine in the original material is released as hydrogen chloride. Based on earlier work, the balance of the chlorine emissions is expected to be in the form of chlorine gas.

More Details

Closed loop control techniques for the growth of single crystal turbine components

Schlienger, M.E.

Analysis of processes used for the production of single crystal turbine components reveals significant shortcomings. Inadequate consideration has been made of the fact the system is cooling dominated and that the amount of cooling tends to increase as the emissive cooling area expands during the process. Experimental evidence suggests that during processing, this increased cooling causes the solidification interface to move away from the baffle and become curved. The motion of the interface results in a decrease in the solidification gradient. The combination of these actions can result in variations in PDAS (primary dendrite arm spacing), grain misalignment and the production of defects. It is shown that despite this tendency, microstructural stabilization may be achieved through the use of the heat of fusion as an internal process heat source.

More Details
Results 92851–92875 of 96,771
Results 92851–92875 of 96,771