Many types of integrated and discrete microelectronic devices exist in the enduring stockpile. In the past, most of these devices have used conventional ceramic hermetic packaging (CHP) technology. Sometime in the future, plastic encapsulated microelectronic (PEM) devices will almost certainly enter the inventory. In the presence of moisture, several of the aluminum-containing metallization features common to both types of packaging become susceptible to atmospheric corrosion (Figure 1). A breach in hermeticity (e.g., due to a crack in the ceramic body or lid seal) could allow moisture and/or contamination to enter the interior of a CHP device. For PEM components, the epoxy encapsulant material is inherently permeable to moisture. A multi-year project is now underway at Sandia to develop the knowledge base and analytical tools needed to quantitatively predict the effect of corrosion on microelectronic performance and reliability. The issue of corrosion-induced failure surfaced twice during the past year because cracks were found in their ceramic bodies of two different CHP devices: the SA371 1/3712 MOSFET and the SA3935 ASIC (acronym for A Simple Integrated Circuit). Because of our inability to perform a model-based prediction at that time, the decision was made to determine the validity of the corrosion concern for these specific situations by characterizing the expected environment and assessing its relative degree of corrosivity. The results of this study are briefly described in this paper along with some of the advancements made with the predictive model development.
We have been working for many years to develop better methods for predicting the lifetimes of polymer materials. Because of the recent interest in extending the lifetimes of nuclear weapons and the importance of environmental seals (o-rings, gaskets) for protecting weapon interiors against oxygen and water vapor, we have recently turned our attention to seal materials. Perhaps the most important environmental o-ring material is butyl rubber, used in various military applications. Although it is the optimum choice from a water permeability perspective, butyl can be marginal from an aging point-of-view. The purpose of the present work was to derive better methods for predicting seal lifetimes and applying these methods to an important butyl material, Parker compound B6 12-70.
The Container Analysis Fire Environment computer code (CAFE) is intended to provide Type B package designers with an enhanced engulfing fire boundary condition when combined with the PATRAN/P-Thermal commercial code. Historically an engulfing fire boundary condition has been modeled as {sigma}T{sup 4} where {sigma} is the Stefan-Boltzman constant, and T is the fire temperature. The CAFE code includes the necessary chemistry, thermal radiation, and fluid mechanics to model an engulfing fire. Effects included are the local cooling of gases that form a protective boundary layer that reduces the incoming radiant heat flux to values lower than expected from a simple {sigma}T{sup 4} model. In addition, the effect of object shape on mixing that may increase the local fire temperature is included. Both high and low temperature regions that depend upon the local availability of oxygen are also calculated. Thus the competing effects that can both increase and decrease the local values of radiant heat flux are included in a reamer that is not predictable a-priori. The CAFE package consists of a group of computer subroutines that can be linked to workstation-based thermal analysis codes in order to predict package performance during regulatory and other accident fire scenarios.
A GaN/AlGaN heterojunction bipolar transistor structure with Mg doping in the base and Si Doping in the emitter and collector regions was grown by Metal Organic Chemical Vapor Deposition in c-axis Al(2)O(3). Secondary Ion Mass Spectrometry measurements showed no increase in the O concentration (2-3x10(18) cm(-3)) in the AlGaN emitter and fairly low levels of C (~4-5x10(17) cm (-3)) throughout the structure. Due to the non-ohmic behavior of the base contact at room temperature, the current gain of large area (~90 um diameter) devices was <3. Increasing the device operating temperature led to higher ionization fractions of the mg acceptors in the base, and current gains of ~10 were obtained at 300 degree C.
The relative density of BCl radicals has been measured in a modified Applied Materials DPS metal etch chamber using laser-induced fluorescence. In plasmas containing mixtures of BCl{sub 3} with Cl{sub 2}, Ar and/or N{sub 2}, the relative BCl density was measured as a function of source and bias power, pressure, flow rate, BCl{sub 3}/Cl{sub 2} ratio and argon addition. To determine the influence of surface materials on the bulk plasma properties, the relative BCl density was measured using four different substrate types; aluminum, alumina, photoresist, and photoresist-patterned aluminum. In most cases, the relative BCl density was highest above photoresist-coated wafers and lowest above blanket aluminum wafers. The BCl density increased with increasing source power and the ratio of BCl{sub 3} to Cl{sub 2}, while the addition of N{sub 2} to a BCl{sub 3}/Cl{sub 2} plasma resulted in a decrease in BCl density. The BCl density was relatively insensitive to changes in the other plasma parameters.
This paper identifies and explores the technical requirements and issues associated with remotely monitoring continuous wave (CW) sources with seismic arrays. Potential approaches to this monitoring problem will be suggested and partially evaluated to expose the monitoring challenges which arise when realistic local geologies and cultural noise sources are considered. The selective directionality and the adaptive noise cancellation properties of arrays are required to observe weak signals while suppressing a colored background punctuated with an unknown distribution of point and sometimes distributive sources. The array is also required to characterize the emitters and propagation environment so as to properly focus on the CW sources of interest while suppressing the remaining emitters. The proper application of arrays requires an appreciation of the complexity of propagation in a non-homogeneous earth. The heterogeneity often limits the available spatial coherence and therefore the size of the army. This adversely impacts the array gain and the array's ability to carefully resolve various emitters. Arrays must also contend with multipath induced by the source and the heterogeneous earth. If the array is to focus on an emitter and realize an enhancement in the signal to noise ratio, methods must be sought to coherently add the desired signal components while suppressing interference which may be correlated with the desired signal. The impact of these and other issues on army design and processing are described and discussed.
Sandia is manufacturing CMOS ICs with 0.5 {micro}m LOCOS and shallow trench isolation (STI) technologies and is developing a 0.35 {micro}m SOI technology. A program based on burn-in and life tests is being used to qualify the 0.5 {micro}m technologies for delivery of high reliability ICs to customers for military and space applications. Representative ICs from baseline wafer lots are assembled using a high reliability process with multilayer hermetic, ceramic packages. These ICs are electrically tested before, during, and after burn-in and subsequent 1000 hour dynamic and static life tests. Two types of ICS are being used for this qualification, a 256K bit SRAM and a Microcontroller Core (MCC). Over 600 ICs have successfully completed these qualification tests, resulting in a failure rate estimate of less than 4 FITS for satellite applications. Recently, a group of SRAMS from a development wafer lot incorporating nonqualified processes of the 0.5 {micro}m LOCOS technology had an unusually high number of failures during the initial electrical test after packaging. The investigation of these failures is described.
Silicide Schottky contacts can be as large as 0.955 eV (E{sub v} + 0.165 eV) on n-type silicon and as large as 1.05 eV (E{sub c} {minus} 0.07 eV) on p-type silicon. Current models of Schottky barrier formation do not provide a satisfactory explanation of occurrence of this wide variation. A model for understanding Schottky contacts via screened pinning at defect levels is presented. In the present paper it is shown that most transition metal silicides are pinned approximately 0.48 eV above the valence band by interstitial Si clusters. Rare earth disilicides pin close to the divacancy acceptor level 0.41 eV below the conduction band edge while high work function silicides of Ir and Pt pin close to the divacancy donor level 0.21 eV above the valence band edge. Selection of a particular defect pinning level depends strongly on the relative positions of the silicide work function and the defect energy level on an absolute energy scale.
Recent space experience has shown that the use of commercial optocouplers can be problematic in spacecraft, such as TOPEX/Poseidon, that must operate in significant radiation environments. Radiation--induced failures of these devices have been observed in space and have been further documented at similar radiation doses in the laboratory. The ubiquitous use of optocouplers in spacecraft systems for a variety of applications, such as electrical isolation, switching and power transfer, is indicative of the need for optocouplers that can withstand the space radiation environment. In addition, the distributed nature of their use implies that it is not particularly desirable to shield optocouplers for use in radiation environments. Thus, it will be important for the space community to have access to radiation hardened/tolerant optocouplers. For many microelectronic and photonic devices, it is difficult to achieve radiation hardness without sacrificing performance. However, in the case of optocouplers, one should be able to achieve both superior radiation hardness and performance for such characteristics as switching speed, current transfer ratio (CTR), minimum power usage and array power transfer, if standard light emitting diodes (LEDs), such as those in the commercial optocouplers mentioned above, are avoided, and VCSELs are employed as the emitter portion of the optocoupler. The physical configuration of VCSELs allows one to achieve parallel use of an array of devices and construct a multichannel optocoupler in the standard fashion with the emitters and detectors looking at each other. In addition, detectors similar in structure to the VCSELs can be fabricated which allows bidirectional functionality of the optocoupler. Recent discussions suggest that VCSELs will enjoy widespread applications in the telecommunications and data transfer fields.
Recent attention has been given to the deployment of an adaptable sensor array realized by multi-robotic systems. Our group has been studying the collective behavior of autonomous, multi-agent systems and their applications in the area of remote-sensing and emerging threats. To accomplish such tasks, an interdisciplinary research effort at Sandia National Laboratories are conducting tests in the fields of sensor technology, robotics, and multi-robotic and multi-agents architectures. Our goal is to coordinate a constellation of point sensors that optimizes spatial coverage and multivariate signal analysis using unmanned robotic vehicles (e.g., RATLERs, Robotic All-ten-sin Lunar Exploration Rover-class vehicles). Overall design methodology is to evolve complex collective behaviors realized through simple interaction (kinetic) physics and artificial intelligence to enable real-time operational responses to emerging threats. This paper focuses on our recent work understanding the dynamics of many-body systems using the physics-based hydrodynamic model of lattice gas automata. Three design features are investigated. One, for single-speed robots, a hexagonal nearest-neighbor interaction topology is necessary to preserve standard hydrodynamic flow. Two, adaptability, defined by the swarm's deformation rate, can be controlled through the hydrodynamic viscosity term, which, in turn, is defined by the local robotic interaction rules. Three, due to the inherent non-linearity of the dynamical equations describing large ensembles, development of stability criteria ensuring convergence to equilibrium states is developed by scaling information flow rates relative to a swarm's hydrodynamic flow rate. An initial test case simulates a swarm of twenty-five robots that maneuvers past an obstacle while following a moving target. A genetic algorithm optimizes applied nearest-neighbor forces in each of five spatial regions distributed over the simulation domain. Armed with knowledge, the swarm adapts by changing state in order to avoid the obstacle. Simulation results are qualitatively similar to lattice gas.
An interferometric technique has been developed for non-destructive, high-confidence, in-situ determination of material properties in MEMS. By using interferometry to measure the full deflection curves of beams pulled toward the substrate under electrostatic loads, the actual behavior of the beams has been modeled. No other method for determining material properties allows such detailed knowledge of device behavior to be gathered. Values for material properties and non-idealities (such as support post compliance) have then been extracted which minimize the error between the measured and modeled deflections. High accuracy and resolution have been demonstrated, allowing the measurements to be used to enhance process control.
The characteristics of a piezoresistive accelerometer in shock environments have been studied at Sandia National Laboratories (SNL) in the Mechanical Shock Testing Laboratory for ten years The SNL Shock Laboratory has developed a capability to characterize accelerometers and other transducers with shocks aligned with the transducer's sensing axis and perpendicular to the transducer's sensing axis. This unique capability includes Hopkinson bars made of aluminum, steel, titanium, and beryllium. The bars are configured as both single and split Hopkinson bars. Four different areas that conclude this study are summarized in this paper: characterization of the cross-axis response of the accelerometer in the four environments of static compression, static strain on a beam, dynamic strain, and mechanical shock, the accelerometer's response on a titanium Hopkinson bar with two 45{degree} flats on the end of the bar; failure analysis of the accelerometer; and measurement of the accelerometer's self-generating cable response in a shock environment.
This paper summarizes recent progress in the development of back-contact crystalline-silicon (c-Si) solar cells and modules at Sandia National Laboratories. Back-contact cells have potentially improved efficiencies through the elimination of grid obscuration and allow for significant simplifications in the module assembly process. Optimization of the process sequence has improved the efficiency of our back-contact cell (emitter wrap through) from around 12% to near 17% in the past 12 months. In addition, recent theoretical work has elucidated the device physics of emitter wrap-through cells. Finally, improvements in the assembly processing back-contact cells are described.
An analytical solution for large deflections of a clamped circular diaphragm with built-in stress is presented. The solution is directly applicable to micromachined pressure sensors. The solution is compared to finite element analysis results and experimental data from a surface-micromachined pressure sensor.
The isochronal anneal technique used to predict isothermal anneal behavior of MOS devices is analyzed as a function of experimental parameters. The effects of detrapping of trapped holes and compensating electrons are discussed.
A hand-held chemical laboratory ({mu}ChemLab) is being developed that utilizes a silicon- nitride-supported microhotplate in the front-end, gas sampling and preconcentration stage. Device constraints include low-power (<200mW at 5V), rapid heating (<20msec), and a relatively uniform temperature distribution throughout the heated area ({approximately}3mm{sup 2}). To optimize for these criteria, the electro-thermal behavior of the microhotplate was modeled using Thermal Analysis System (TAS). Predicted steady-state and transient behavior agree well with infrared (IR) microscope data and measured transient response for a low-stress silicon nitride thermal conductivity of k{sub n} = 6.4 x 10{sup {minus}2} W x (cm x {degree}C){sup {minus}1} and a convection coefficient of h{sub cv} = 3.5 x 10{sup {minus}3} W x (cm{sup 2} x {degree}C){sup {minus}1}. The magnitude of h{sub cv} is framed in the context of vacuum measurements and empirical data. Details and limitations of the IR measurement are discussed. Finally, the efficacy of methods for reducing thermal gradients in the microhotplate's active area is presented.
This paper presents an approach for treating uncertainty in the performance assessment process to efficiently address regulatory performance objectives for radioactive waste disposal and discusses the application of the approach at the Greater Confinement Disposal site. In this approach, the performance assessment methodology uses probabilistic risk assessment concepts to guide effective decisions about site characterization activities and provides a path toward reasonable assurance regarding regulatory compliance decisions. Although the approach is particularly amenable to requirements that are probabilistic in nature, the approach is also applicable to deterministic standards such as the dose-based and concentration-based requirements.
An oscillator technology using surface acoustic wave delay lines integrated with GaAs MESFET electronics has been developed for GaAs-based integrated microsensor applications. The oscillator consists of a two-port SAW delay line in a feedback loop with a four-stage GaAs MESFET amplifier. Oscillators with frequencies of 470, 350, and 200 MHz have been designed and fabricated. These oscillators are also promising for other RF applications.
XTX8003 is an extrudable explosive composed of 80% PETN and 20% Sylgard 182 (polydimethylsiloxane). Knowledge of the aging characteristics of XTX8003 is desired to understand the relationship between chemical and physical changes and performance. This understanding will allow improved assessment of the current state and also projected lifetime of components that contain this material. A literature search revealed few published studies of the aging behavior of XTX8003 or a chemically similar material, LX-13. Two studies showed that detonation velocity had decreased after storage at 70 C for two years. Another study showed a 30% decrease in target penetration by conical shaped charge after 12 weeks of storage at 82 C. Only one study was found which evaluated chemical and physical changes, but no information was available to correlate performance degradation to chemical and physical changes in the material. In summary, the major changes seen in aged XTX8003 are in detonation velocity and particle morphology, but particle morphology does not appear to be the determining factor in the loss of detonation velocity. The study will continue at least 24 months, at which time the data will be evaluated to determine how best to continue with the remaining test samples.
In a construction project, the contractor and the owner each have a responsibility for ensuring the health and safety of personnel on a project site. The contractor has the responsibility for ensuring that the provisions of OSHA'S safety and health regulations are followed and that the work is conducted in a safe and well thought out manner (Kohn 1996). The owner has a responsibility for disclosing to the contractor those owner-controlled hazards that are present in the work area due to ongoing and past operations (OSHA 1997). With the owner taking an active role in disclosing the potential hazards, the contractor is able to account for, plan, and mitigate potential health and safety issues during the performance phase of the project. At Sandia National Laboratories, this disclosure is made early in the project through the use of processes developed specifically for this purpose.
Lynx is a high resolution, synthetic aperture radar (SAR) that has been designed and built by Sandia National Laboratories in collaboration with General Atomics (GA). Although Lynx may be operated on a wide variety of manned and unmanned platforms, it is primarily intended to be fielded on unmanned aerial vehicles. In particular, it may be operated on the Predator, I-GNAT, or Prowler II platforms manufactured by GA Aeronautical Systems, Inc. The Lynx production weight is less than 120 lb. and has a slant range of 30 km (in 4 mm/hr rain). It has operator selectable resolution and is capable of 0.1 m resolution in spotlight mode and 0.3 m resolution in stripmap mode. In ground moving target indicator mode, the minimum detectable velocity is 6 knots with a minimum target cross-section of 10 dBsm. In coherent change detection mode, Lynx makes registered, complex image comparisons either of 0.1 m resolution (minimum) spotlight images or of 0.3 m resolution (minimum) strip images. The Lynx user interface features a view manager that allows it to pan and zoom like a video camera. Lynx was developed under corporate finding from GA and will be manufactured by GA for both military and commercial applications. The Lynx system architecture will be presented and some of its unique features will be described. Imagery at the finest resolutions in both spotlight and strip modes have been obtained and will also be presented.
A novel approach to simulating the dominant dynamic processes present during concentrated energy beam welding of metals is presented. A model for transient behavior of the front keyhole wall is developed. It is assumed that keyhole propagation is dominated by evaporation recoil-driven melt expulsion from the beam interaction zone. Results from the model show keyhole instabilities consistent with experimental observations of metal welding, metal cutting and ice welding.
We have been working for many years to develop improved methods for predicting the lifetimes of polymers exposed to air environments and have recently turned our attention to seal materials. This paper describes an extensive study on a butyl material using elevated temperature compression stress-relaxation (CSR) techniques in combination with conventional oven aging exposures. The results initially indicated important synergistic effects when mechanical strain is combined with oven aging, as well as complex, non-Arrhenius behavior of the CSR results. By combining modeling and experiments, we show that diffusion-limited oxidation (DLO) anomalies dominate traditional CSR experiments. A new CSR approach allows us to eliminate DLO effects and recover Arrhenius behavior. Furthermore, the resulting CSR activation energy (E{sub a}) from 125 C to 70 C is identical to the activation energies for the tensile elongation and for the oxygen consumption rate of unstrained material over similar temperature ranges. This strongly suggests that the same underlying oxidation reactions determine both the unstrained and strained degradation rates. We therefore utilize our ultrasensitive oxygen consumption rate approach down to 23 C to show that the CSR E{sub a} likely remains unchanged when extrapolated below 70 C, allowing very confident room temperature lifetime predictions for the butyl seal.