Publications

Results 96051–96100 of 96,771

Search results

Jump to search filters

Review of models in available nonisothermal 2-phase flow codes. [Yucca Mountation Project]

Fewell, M.E.

The near field surrounding buried waste in the proposed high level nuclear waste repository in Yucca Mountain, Nye County, Nevada, is a region where strongly heat driven processes can exist. These strongly heat driven processes further complicate an already very difficult problem, i.e,. predicting groundwater flow and chemical transport through unsaturated fractured, heterogeneous porous media. The coupling between fluid flow and heat emanation is central to understanding these strongly heat driven processes. Although it is important that all of couplings be investigated, the intent of this paper is to discuss the mathematical models and associated computer codes that can be used in investigating the coupled heat emanation and fluid flow in unsaturated porous media. The information in this paper should be useful to those studying these phenomena, validating these models, or investigating the coupling of fluid flow and heat emanation with the other phenomena. The codes implementing these models are commonly referred to as nonisothermal two-phase flow codes. 5 refs., 4 tabs.

More Details

Low pressure MOCVD (metalorganic chemical vapor deposition) growth of InSb

Cunningham, B.T.; Schneider Jr., R.P.; Biefeld, R.M.

Low pressure (200 Torr) metalorganic chemical vapor deposition (MOCVD) of InSb has been examined through variation of the Column III (TMIn) and Column V (TMSb or TESb) precursor partial pressures. The use of lower growth pressure significantly enhanced the range of allowable Column III Column V partial pressures in which specular morphology InSb could be obtained without the formation of In droplets or Sb crystals. In addition, a 70% improvement in the average hole mobility was obtained, compared to InSb grown in the same reactor at atmospheric pressure. SIMS analysis revealed that Si at the substrate/epitaxial layer interface is an important impurity that may contribute to degradation of the mobility. Substitution of TESb for TMSb did not result in any improvement in the purity of the InSb. 6 refs.

More Details

Mechanisms of selectivity loss during tungsten CVD (chemical vapor deposition)

Creighton, J.R.

The tungsten subfluoride mechanism as well as other proposed mechanisms of selectivity loss are reviewed. To further demonstrate the viability of the tungsten subfluoride mechanism, we have extended the measurement of the tungsten subfluoride production rate down to 450{degree}C. We also report results from some preliminary experiments designed to identify the selectivity loss mechanism when elemental silicon is available for reaction. Comments regarding the origins of the insulator effect and selectivity loss for silane reduction are offered. 23 refs., 2 figs.

More Details

Techniques for controlling a two-link flexible arm

Feddema, John T.

More Details

Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish

Muir, J.F.; Hogan Jr., R.E.; Skocypec, R.D.; Buck, R.

The concept of solar driven chemical reactions in a commercial-scale volumetric receiver/reactor on a parabolic concentrator was successfully demonstrated in the CAtalytically Enhanced Solar Absorption Receiver (CAESAR) test. Solar reforming of methane (CH{sub 4}) with carbon dioxide (CO{sub 2}) was achieved in a 64-cm diameter direct absorption reactor on a parabolic dish capable of 150 kW solar power. The reactor was a catalytic volumetric absorber consisting of a multi-layered, porous alumina foam disk coated with rhodium (Rh) catalyst. The system was operated during both steady-state and solar transient (cloud passage) conditions. The total solar power absorbed reached values up to 97 kW and the maximum methane conversion was 70%. Receiver thermal efficiencies ranged up to 85% and chemical efficiencies peaked at 54%. The absorber performed satisfactorily in promoting the reforming reaction during the tests without carbon formation. However, problems of cracking and degradation of the porous matrix, nonuniform dispersion of the Rh through the absorber, and catalyst deactivation due to sintering and possible encapsulation, must be resolved to achieve long-term operation and eventual commercialization. 17 refs., 11 figs., 1 tab.

More Details

Atomic-scale simulation of adhesion between metallic surfaces

Taylor, Paul A.

We have performed MD simulations of adhesive phenomena, on an atomic scale, between metals possessing both smooth and stepped-surfaces. Studies of adhesion between identical metals, consisting of either Au, Cu, or Ni, with (001) or (111) orientations, reveal the existence of adhesive avalanches as the bodies are brought to within a critical separation ({approximately}2 {angstrom}). That is, as the surfaces approach one another, one or both surface layers becomes unstable, and abruptly moves toward the other. This signals a transition from an initial system with two distinct surfaces to one possessing no identifiable surfaces. The presence of adhesive avalanches will pose difficulties in determining adhesive forces and energies by means of atomic force microscopy at sub-nanometer separations of probe tip and sample surface. 7 refs., 3 figs.

More Details

Application of NUREG-1150 methods and results to accident management

Camp, Susan E.

The use of NUREG-1150 and similar Probabilistic Risk Assessments in NRC and industry risk management programs is discussed. Risk management'' is more comprehensive than the commonly used term accident management.'' Accident management includes strategies to prevent vessel breach, mitigate radionuclide releases from the reactor coolant system, and mitigate radionuclide releases to the environment. Risk management also addresses prevention of accident initiators, prevention of core damage, and implementation of effective emergency response procedures. The methods and results produced in NUREG-1150 provide a framework within which current risk management strategies can be evaluated, and future risk management programs can be developed and assessed. Examples of the use of the NUREG-1150 framework for identifying and evaluating risk management options are presented. All phases of risk management are discussed, with particular attention given to the early phases of accidents. Plans and methods for evaluating accident management strategies that have been identified in the NRC accident management program are discussed. 2 refs., 3 figs.

More Details

Interfacial force sensor with force-feedback control

Joyce, S.A.; Houston, J.E.; Smith, B.K.

A new interfacial force microscope capable of measuring the forces between two surfaces over the entire range of surface separations, up to contact, has been developed. The design is centered around a differential capacitance displacement sensor where the common capacitor plate is supported by torsion bars. A force-feedback control system balances the interfacial forces at the sensor, maintaining the common capacitor plate at its rest position. This control eliminates the instability which occurs with the conventional cantilever-based force sensors when the attractive force gradient exceeds the mechanical stiffness of the cantilever. The ability to measure interfacial forces at surface separations smaller than this instability point using the feedback control is demonstrated. 11 refs., 3 figs.

More Details

Polymer characterization using the time-resolved phosphorescence of singlet oxygen as a spectroscopic probe

Clough, Roger L.

The lowest excited electronic state of molecular oxygen, singlet oxygen ({sup 1}{Delta}{sub g}0{sub 2}), can be produced in solid organic polymers by a variety of different methods. Once produced, singlet oxygen will return to the ground triplet state by two pathways, radiative (phosphorescence) and non-radiative decay. Although the quantum efficiency of phosphorescence is small ({minus}10{sup {minus}5}), singlet oxygen can be detected by its emission at 1270 mn in both steady-state and time-resolved experiments. The phosphorescence of singlet oxygen can be used to characterize many properties of a solid organic polymer. 2 refs., 5 figs.

More Details

Design considerations for multi component molecular-polymeric nonlinear optical materials

Singer, K.D.; Kuzyk, M.G.; Fang, T.; Holland, W.R.; Cahill, P.A.

We review our work on multi component polymeric nonlinear optical materials. These materials consist of nonlinear optical molecules incorporated in a polymeric host. A cross-linked triazine polymer incorporating a dicyanovinyl terminated azo dye was found to be relatively stable at 85{degree} and posses an electro-optic coefficient of 11pm/V. We have also observed the zero dispersion condition in a new anomalous dispersion dye for phase matched second harmonic generation, and expect efficient conversion to the blue. A squarylium dye, ISQ, has been found to posses a large third order nonlinearity, and may display two-level behavior. 24 refs., 11 figs.

More Details

Total-dose radiation hardness assurance for space electronics

Winokur, Peter S.

An improved standard total-dose test method is described to qualify electronics for a low-dose radiation environment typical of space systems. The method consists of {sup 60}Co irradiation at a dose rate of 1--3 Gy(Si)/s (100--300 rad(Si)/s) and a subsequent 373 K (100{degree}C) bake. New initiatives in radiation hardness assurance are also briefly discussed, including the Qualified Manufacturers List (QML) test methodology and the possible use of 1/f noise measurements as a nondestructive screen for oxide-trap charge related failure. 8 refs.

More Details

Predictive data compression with exact recovery (summary)

Stearns, S.D.

A two-stage data compression technique that provides for exact, bit-for-bit recovery is described. The first stage is a modified form of conventional linear prediction which generates an error or residue sequence in such a way that exact reconstruction of the original data sequence can be accomplished with a simple recovery algorithm. The second stage is bi-level sequence coding. Even though the residue sequence from the first stage is essential white and Gaussian with seismic or other similar waveform data, bi-level sequence coding will generally provide further compression. The complete technique is described briefly in this summary, and examples of its performance are presented. A full paper on the algorithm is available from the author. 12 refs., 2 figs., 2 tabs.

More Details

Contamination reduction program: A means to instituting ultra pure processing

Conley, W.R.

ULSI manufacturing technologies have resulted in the development of Ultra-Pure Processing (UPP) capabilities for the world-wide semiconductor industry. The primary goal of Ultra Pure Processing is the elimination of extraneous contaminants, both gaseous and particulate, from the wafer process environment. This calls for a comprehensive approach to the design, operation, and maintenance of semiconductor process equipment. Through UPP one may reduce the number of uncontrolled variables within a system enhancing implementation of Statistical Process Control on the process environment within the tool (in situ). Greater control over the process environment translates into increased product quality, manufacturability, throughput and yield. Instituting UPP requires the capability of monitoring contaminants in the process environment a well as a systematic approach to isolating and eliminating contamination sources. Ultra Pure Processing can result from a Contamination Reduction Program. Presented here are the results from a Contamination Reduction Program performed on a state-of-the-art vertical thermal process reactor (VTR). 8 figs., 5 tabs.

More Details

PAMTRAK: A personnel and material tracking system

Anspach, J.

The nuclear industry uses sensitive or classified parts and material that must be protected and accounted for. We believe there is a need for an automated system that can help protect and inventory these parts and material. In response to this need Sandia National Laboratories Division 5245 is developing a personnel and material tracking system named PAMTRAK to safeguard sensitive parts and material at selected Department of Energy facilities. This paper describes the project's background, design goals and features.

More Details

Security alarm communication and display systems development

Waddoups, I.G.

Sandia National Laboratories has developed a variety of alarm communication and display systems for a broad spectrum of users. This paper will briefly describe the latest systems developed for the Department of Energy (DOE), the Department of Defense (DoD), and the Department of State (DOS) applications. Applications covered will vary from relatively small facilities to large complex sites. Ongoing system developments will also be discussed. The concluding section will summarize the practical, implementable state-of-the-art features available in new systems. 6 figs.

More Details

The mechanical behavior of microcellular foams

Ozkul, M.H.; Mark, J.E.; Aubert, J.H.

The mechanical behavior of microcellular open-cell foams prepared by a thermally induced phase separation process are investigated. The foams studied were prepared from isotactic polystyrene, polyacrylonitrile, and poly(4-methyl-1-pentene) (rigid foams), and polyurethane and Lycra (elastomeric foams). Their densities were in the range 0.04--0.27 g/cm3. Conventional polystyrene foams were used for comparison. The moduli and collapse stresses of these foams were measured in compression and compared with the current constitutive laws which relate mechanical properties to densities. A reinforcement technique based on the in-situ precipitation of silica was used to improve the mechanical properties. 13 refs., 4 figs., 3 tabs.

More Details

Considerations relating to pulsed-beam modification of materials

Myers, S.M.; Follstaedt, D.M.; Bourcier, R.J.; Dugger, M.T.; Mcintyre, D.C.; Rader, D.J.

Ion implantation has been shown to produce unique improvements in the properties of a wide range of materials. This technology has been extensively used for doping of semiconductors, where the required doses and implantation depths are relatively modest and readily achieved with commercial implanters. Other applications of ion implantation currently being pursued at a commercial level include the synthesis of buried second-phase layers in Si and the improvement of metal surface properties such as hardness, friction, wear rate, and corrosion. However, these applications have been severely constrained by the costs of treating large surface areas with the high ion doses required, and by the need to produce modified layers thicker than the range of the sub-MeV ions available from presently available commercial high-flux ion implanters. It therefore seems worthwhile to consider whether pulsed ion accelerators may offer advantages for such applications by providing high ion fluxes at MeV energies. The previously reported applications of pulsed accelerators to materials modification have used sub-MeV ion energies. The purpose of this article is to being these considerations the perspective of materials scientists who use ion implantation. We comment on needed extensions in implantation capabilities while leaving to others the question of whether these needs can be met with pulsed-beam technology. Further, in order to illustrate the kinds of beneficial materials modifications that can be achieved with implantation, we provide examples from recent work at Sandia National Laboratories, where large improvements have been realized in the tribological properties and strengths of Fe and A{ell} alloys. 10 refs., 6 figs.

More Details

Experience with more productive information systems design at Sandia National Laboratories

Sharp, J.K.

The natural language technique was just one of many approaches to information system design in 1987. The success of this approach convinced management of the viability of this new'' approach. A group was created to use natural language in information system specifications and designs. Two of the projects undertaken by this group will be reviewed. The first is a quality database that allows for the management of the process that certifies production capabilities for major weapon components and the second tracks command and control status of weapons. A third external project involving nuclear disarmament will also be discussed.

More Details

WIPP (Waste Isolation Pilot Plant) performance assessment: A 1990 snapshot of compliance with 40 CFR 191, Subpart B

Marietta, Melvin G.

The United States Department of Energy (DOE) plans to use the Waste Isolation Pilot plant (WIPP) in southeastern New Mexico for disposal of transuranic wastes generated by defense programs. The DOE must first demonstrate compliance with the Environmental Protection Agency's (EPA) Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR Part 191) hereafter called the Standard. The Standard was vacated by a Federal Court of Appeals in 1987 and is undergoing revision; by agreement with the State of New Mexico the DOE will continue to evaluate repository performance with respect to the Standard as first promulgated until a new version is available. This paper reviews the results of a 1989 preliminary demonstration of the performance-assessment methodology that will be used by the WIPP project ultimately to assess compliance with the Standard. The report also describes conceptual and numerical improvements in the performance-assessment methodology made during 1990, and summarizes the progress made toward achieving the probabilistic assessment of repository performance required for regulatory compliance. 13 refs., 4 figs.

More Details

Microcellular foams prepared from demixed polymer solutions

Aubert, James H.

Low-density, microcellular polymer foams have numerous applications as structural supports in high-energy physics experiments, in catalysis, ion exchange, and filtration, and for a variety of biomedical uses. A versatile method to prepare such foams is by thermally-induced phase separation (TIPS) of polymer solutions. Demixed solutions can be transformed into a foam by freezing the demixed solution and removing the solvent by freeze-drying. The morphology of these foams is determined by the the thermodynamics and kinetics of phase separation. A model of both the early and late stage structure development for demixed polymer solutions will be presented. For semi-crystalline polymers, gels can be prepared by crystallizing the polymer from solution, either a homogeneous solution or a demixed solution. Foams can be prepared from these gels by the supercritical extraction of the solvent. By understanding and utilizing the phase separation behavior of polymer solutions, engineered microcellular foams can be prepared. To design the foams for any application one must be able to characterize their morphology. Results will be presented on the morphological characterization of these foams and the relationship of the morphology to their processing history. 14 refs., 12 figs.

More Details

The preparation of InAsSb/InSb SLS (strained-layer superlattice) and InSb photodiodes by MOCVD

Biefeld, Robert M.

Infrared absorption and photoluminescence have been demonstrated for InAs{sub 1-x}Sb{sub x}/InSb strained-layer superlattices (SLS's) in the 8--15 {eta}m region for As content less than 20%. This extended infrared activity is due to the type II heterojunction band offset in these SLS's. The preparation of the first MOCVD grown p-n junction diode was achieved by using dimethyltellurium as an in-type dopant. Several factors, such as background doping and dopant profiles affect the performance of this device. InSb diodes have been prepared using tetraethyltin. The resulting current-voltage characteristics are improved over those of diodes grown previously using dimethyltellurium. Doping levels of 8 {times} 10{sup 15} to 5 {times} 10{sup 18} cm{sup {minus}3} and mobilities of 6.7 {times} 10{sup 4} to 1.1 {times} 10{sup 4} cm{sup 2}/Vs have been measured for Sn doped InSb. SLS diode structures have been prepared using Sn and Cd as the dopants. Structures prepared with p-type buffer layers are more reproducible. 5 refs., 4 figs.

More Details

MELCOR analysis of the TMI-2 accident

Boucheron, Edward A.

This paper describes the analysis of the Three Mile Island-2 (TMI-2) standard problem that was performed with MELCOR. The MELCOR computer code is being developed by Sandia National Laboratories for the Nuclear Regulatory Commission for the purpose of analyzing severe accident in nuclear power plants. The primary role of MELCOR is to provide realistic predictions of severe accident phenomena and the radiological source team. The analysis of the TMI-2 standard problem allowed for comparison of the model predictions in MELCOR to plant data and to the results of more mechanistic analyses. This exercise was, therefore valuable for verifying and assessing the models in the code. The major trends in the TMI-2 accident are reasonably well predicted with MELCOR, even with its simplified modeling. Comparison of the calculated and measured results is presented and, based on this comparison, conclusions can be drawn concerning the applicability of MELCOR to severe accident analysis. 5 refs., 10 figs., 3 tabs.

More Details

Kinetics of molecular beam epitaxy: Effect of ion-induced sputtering

Richards, P.M.

Steady state roughness of surfaces growing by molecular beam epitaxy is investigated by Monte Carlo simulations under conditions where an ion beam is also present which sputters adatoms off the surface. If the sputtering is random, it only increases the roughness. But if the sputtering probability is strongly dependent on the binding energy of an adatom within a cluster or island, the ions can have a smoothening effect. Physical arguments are given in support of the results. 8 refs., 4 figs.

More Details

Photovoltaic concentrator module reliability: Failure modes and qualification

Richards, Elizabeth H.

The purpose of this paper is to discuss the current issues of interest in PV concentrator module reliability. Before describing in detail the reliability concerns about PV concentrator modules, it should be emphasized that, with proper design and attention to quality control, there is nothing to prevent concentrator modules from being as reliable as crystalline-silicon flat-plate modules have proven to be. Concentrator modules tested outdoors, as well as in the first-generation systems, have generally been reliable, and no degradation in cell output has been observed. Also, although they are not included in this paper, there are a few items currently of concern with the reliability of other PV module technologies that are not issues with PV concentrator technology, such as the stability of amorphous-silicon efficiencies and concerns about EVA encapsulation.

More Details

Accident sequence analysis for a BWR (Boiling Water Reactor) during low power and shutdown operations

Whitehead, Donnie W.

Most previous Probabilistic Risk Assessments have excluded consideration of accidents initiated in low power and shutdown modes of operation. A study of the risk associated with operation in low power and shutdown is being performed at Sandia National Laboratories for a US Boiling Water Reactor (BWR). This paper describes the proposed methodology for the analysis of the risk associated with the operation of a BWR during low power and shutdown modes and presents preliminary information resulting from the application of the methodology. 2 refs., 2 tabs.

More Details

A trellis-searched APC (adaptive predictive coding) speech coder

Malone, Kevin T.

In this paper we formulate a speech coding system that incorporates trellis coded vector quantization (TCVQ) and adaptive predictive coding (APC). A method for optimizing'' the TCVQ codebooks is presented and experimental results concerning survivor path mergings are reported. Simulation results are given for encoding rates of 16 and 9.6 kbps for a variety of coder parameters. The quality of the encoded speech is deemed excellent at an encoding rate of 16 kbps and very good at 9.6 kbps. 13 refs., 2 figs., 4 tabs.

More Details

Certified records manager exam

Ledbetter, Karen L.

The Institute of Certified Records Managers (ICRM) is a non-profit, certifying organization of professional records managers and administrators. ICRM members are experienced in information requirements, records and information systems, and the related office systems and technologies. All members have met certification requirements and have received the Certified Records Manager (CRM) designation. As the field of information and records management moves toward standardization, and as the application of new technologies and technicalities complicate the measurement and demonstration of professional competence, the need for a means of identifying persons who have basic competency increases. The ICRM is providing such a means by testing and certifying basic knowledge. More and more job announcements are requiring this evidence of competency. Unfortunately, as an organization, NIRMA has a relatively small number of CRMs. The goal of the ICRM Development Group is two-fold; (1) to encourage NIRMA members to obtain their certification by providing basic information and support and; (2) to develop the Nuclear Specialist test module which will demonstrate that bearers have demonstrated expertise in nuclear records management as well as basic competencies. This report covers the examination process.

More Details

Requirements identification: How do we know what to do

Ledbetter, Karen L.

The Nuclear Information and Records Management Association (NIRMA) Task Force on Requirements Identification is currently involved in a four part project. During the course of the next year the Task Force will: (1) identify the generic requirements documents which have common applicability to nuclear utilities and DOE organizations; (2) research the requirements documents to identify individual requirements; (3) develop and implement a PC based tracking system to present and maintain the research data; and (4) implement a process for ongoing review of requirements. This report discusses these issues.

More Details

Multiplexer/amplifier test results for SP-100

King, David L.

Multiplexer and amplifier systems must be designed with transistors that can perform satisfactorily over ten years to a total gamma dose of 120E6 rads and a total neutron fluence of 1.6E15 nvt for the SP-100 reactor system. Series of gamma and neutron tests have been completed to measure transistor degradation as a function of total dose, fluence, and temperature. Test results indicate that modest increases in temperature result in substantial improvement of transistor performance at a neutron flux of 8E8 n/cm{sup 2}/s. 2 refs., 3 figs.

More Details

Thermal-hydraulic design issues and analysis for the ITER (International Thermonuclear Experimental Reactor) divertor

Koski, Jorman A.

Critical Heat Flux (CHF), also called burnout, is one of the major design limits for water-cooled divertors in tokamaks. Another important design issue is the correct thermal modeling of the divertor plate geometry where heat is applied to only one side of the plate and highly subcooled flow boiling in internal passages is used for heat removal. This paper discusses analytical techniques developed to address these design issues, and the experimental evidence gathered in support of the approach. Typical water-cooled divertor designs for the International Thermonuclear Experimental Reactor (ITER) are analyzed, and design margins estimated. Peaking of the heat flux at the tube-water boundary is shown to be an important issue, and design concerns which could lead to imposing large design safety margins are identified. The use of flow enhancement techniques such as internal twisted tapes and fins are discussed, and some estimates of the gains in the design margin are presented. Finally, unresolved issues and concerns regarding hydraulic design of divertors are summarized, and some experiments which could help the ITER final design process identified. 23 refs., 10 figs.

More Details

Calorimetric measurements of energy transfer efficiency and melting efficiency in CO sub 2 laser beam welding

Fuerschbach, Phillip W.

Our previous calorimetric studies of weld melting efficiency and arc efficiency in the GTAW and PAW processes have naturally led us to speculate as to the magnitude of the efficiencies in the LBW process which to data have also not been adequately investigated. Most welding engineers that have had experience with the LBW process are acutely aware that the metals' absorptivity, the surface finish, and the laser wavelength, all play an important role in affecting the energy transfer efficiency, but the extent of their influence and our understanding of the influence of other process variables is not well understood. In addition, it is widely thought that only the LBW or EBW processes can be selected for applications where thermal damage and distortion from the welding process must be kept to a minimum. For these reasons, we have looked forward to performing these calorimetric experiments since they potentially can answer such important questions as: whether or not the melting efficiency of the LBW process is superior to that obtainable with conventional GTAW and PAW welding processes This study was prompted by poor production yields on switching device due to cracking of the ceramic header after final closure welding with the CO{sub 2} LBW process. This calorimetric study was begun in hopes of determining if allowed variations in production process control variables were responsible for increases in heat input and the resulting thermal stresses. By measuring the net heat input to the workpiece with the calorimeter and by measuring the laser output energy and the weld fusion zone size it was possible to determine the magnitudes of both the energy transfer efficiency and the melting efficiency as well as observe their dependence on the process variables. 3 refs.

More Details

On the design of component test plans based on system reliability objectives

Easterling, Robert G.

Component test plans are often designed by allocating a system's reliability goal among the system's components, then designing individual component test plans suitable for demonstrating achievement of each component's reliability goal. One use of the resulting component test data is the calculation of estimated system reliability, based on a model linking the component reliabilities to system reliability. The statistical precision of this system estimate depends on the component test plans (numbers of each component tested and the type of tests, e.g., variables or attributes) and, hence, is determined by the component test planners. Because system reliability may be of considerable interest, we feel an integrated view of component testing is required to assure that the ensemble of component tests will provide an adequate system reliability estimate. This paper considers the case of a series system of different components and binomial component data. For the case of equal numbers of units tested of each component (which can be shown to minimize total cost, subject to the risk constraints) the O.C. envelope is readily derived and from this envelope component test plans that satisfy the specified risks can be derived from equations that involve the cumulative binomial distribution function. Existing tables pertaining to acceptance sampling plans based on the binomial distribution can be used to determine the required number of component tests. 10 refs., 2 figs.

More Details

Time finite element methods for large rotational dynamics of multibody systems

Mello, F.J.

Weak formulations in Analytical Dynamics are developed, paralleling the variational methods in elastostatics, and including a fundamental yet novel approach for treating constraints (both holonomic and nonholonomic). A general three field approach is presented, in which the momentum balance conditions, the compatibility conditions between displacement and velocity, the constitutive relations and the displacement and momentum boundary conditions are all enforced in weak form. A primal, or kinematic formulation is developed from the general form by enforcing the compatibility conditions and displacement boundary conditions a priori. The conditional stability of the kinematic formulation is the counterpart of the locking phenomenon in elastostatics and may be avoided, either by reduced order integration, or by utilizing a mixed formulation. Toward this end, a two field mixed formulation is presented, which follows from the general form, when the constitutive relations are satisfied a priori. A general set of the constraint equations are introduced into the kinematic and mixed formulations, using a specific choice of multipliers, which results in modified variational principles. Several simple examples concerning rigid body dynamics are presented. 15 refs., 18 figs.

More Details

Dynamic high-pressure studies of an electrothermal capillary

Benson, D.A.

This paper describes arc discharge tests conducted in a prepressurized, constant-volume pressure vessel to study arc behavior over a wide range of current densities, discharge durations and initial vessel pressures. This method allows controlled access to a wider range of conditions than those previously studied in capillary tests. We have investigated aspects of the radiative heat transfer by calculating the material opacity and mean free paths of photons for conditions typical of arc diagnostics. We also performed one-dimensional Eulerian hydrodynamic calculations of the boundary layer behavior in the radiative diffusion approximation. These calculations, which describe the radial mass flow and heat transfer in the absence of turbulent flow effects, show the characteristic times for equilibrium of the high-pressure arc. Finally, we describe progress on a promising means for increasing the mass flux from the capillary discharge through the use of chemically reactive media on the capillary walls. 20 refs., 7 figs.

More Details

Single event upset hardening techniques

Weaver, H.T.

Integrated circuit logic states are maintained by virtue of specific transistor combinations being either on'' (conducting) or off'' (nonconducting). High energy ion strikes on the microcircuit generate photocurrents whose primary detrimental effect is to make off'' transistors appear on,'' confusing the logic state and leading to single event upset (SEU). Protection against these soft errors is accomplished using either technology or circuit techniques, actions that generally impact yield and performance relative to unhardened circuits. We describe, and using circuit simulations analyze, a technique for hardening latches which requires combinations of technology and circuit modifications, but which provides SEU immunity without loss of speed. Specifically, a single logic state is hardened against SEU using technology methods and the information concerning valid states is then used to simplify hardened circuit design. The technique emphasizes some basic hardening concepts, ideas for which will be reviewed. 3 refs., 2 figs.

More Details

Statistical modeling for particle impact noise detection testing

Prairie, R.R.; Zimmer, W.J.

Particle Impact Noise Detection (PIND) testing is widely used to test electronic devices for the presence of conductive particles which can cause catastrophic failure. This paper develops a statistical model based on the rate of particles contaminating the part, the rate of particles induced by the test vibration, the escape rate, and the false alarm rate. Based on data from a large number of PIND tests for a canned transistor, the model is shown to fit the observed results closely. Knowledge of the parameters for which this fit is made is important in evaluating the effectiveness of the PIND test procedure and for developing background judgment about the performance of the PIND test. Furthermore, by varying the input parameters to the model, the resulting yield, failure rate and percent fallout can be examined and used to plan and implement PIND test programs.

More Details

Processing experiments for development of high-efficiency silicon solar cells

Gee, J.M.

Fabrication of high-efficiency silicon solar cells requires processing technology capable of maintaining long bulk carrier lifetime and low surface recombination. Development of long-lifetime processing techniques using experimental designs based on statistical methods is described. The first three experiments investigated pre-oxidation cleans, phosphorus gettering, and a comparison of different phosphorus diffusion sources. Optimal processing parameters were found to depend on type of silicon material. 2 refs., 2 figs., 2 tabs.

More Details

Properties and characterization of thin film ferroelectric capacitors for nonvolatile memories

Nasby, R.D.S.

Thin film ferroelectric materials are the basis for a new, promising IC nonvolatile memory technology. The primary material being studied for ferroelectric memories is PZT. One of the key factors in determining the feasibility of PZT ferroelectric memories for weapon or space applications is whether PZT ferroelectric technology can be integrated into a radiation-hardened CMOS or bipolar process. Sandia National Laboratories has a program to study ferroelectric/CMOS process integration issues. The primary goal of this program is to determine if radiation-hardened reliable ferroelectric/CMOS IC memories can be fabricated. This program includes both the fabrication and characterization of ferroelectric test capacitors. In this paper we will give a brief overview of the program, discuss techniques developed to characterize ferroelectric devices for retention and endurance, and give results on studies of fatigue and retention of capacitors.

More Details

Travelling wave Faraday effect fiber current sensors

Cernosek, R.W.

A travelling wave Faraday effect fiber current sensor, consisting of a helical optical fiber coil immersed in a dielectric medium, has been demonstrated. Improved phase matching conditions have led to measured bandwidth enhancements of greater than a factor of four. Sensitive devices with multi-gigahertz bandwidths are possible using this technique. 7 refs., 3 figs.

More Details

Flow behavior of Ti-24Al-11Nb at high strain rates

Bourcier, R.J.

The deformation and crack initiation behavior of Ti-24Al-11Nb has been examined over a temperature range of 298 to 923 K and for strain rates from 10{sup {minus}4}/s to 10{sup 2}/s. Tests performed in compression indicate much lower strain hardening at 10{sup 2}/s than at either 10{sup {minus}1}/s or 10{sup {minus}4}/s at all temperatures. Associated with this behavior is the occurrence of non-uniform, localized deformation bands at 10{sup 2}/s. An analysis indicates that adiabatic deformation conditions predominate at 10{sup 2}/s and that these result in adiabatic softening. Furthermore, as a result of non-uniform deformation and adiabatic heating, this Ti{sub 3}-Al-based alloy is actually more resistant to strain-induced microcrack initiation at 10{sup 2}/s than at 10{sup {minus}4}/s during room temperature testing. 16 refs., 7 figs.

More Details

On the construction of constitutive equations for large deformations

Herrmann, W.

This paper attempts to give an elementary review of the kinematics of large deformations with a view to illustrating some of the underlying geometric concepts, and then goes on to review some basic features of elastic, hypoelastic, and rate type constitutive equations relevant to their use in numerical methods. Since some recent work has emphasized working in a rotated'' intermediate configuration, one in which the rigid body rotation has been backed out, results relating to this configuration are included, otherwise all of the results have been read off directly from Truesdell and Toupin ( ) or Truesdell and Noll ( ). Finally, results given by Nemat-Nasser ( ) are quoted which reconcile some generalizations of infinitesimal plasticity and some remarks are made relevant to the introduction of tensor internal state variables. Thermodynamic effects, although important in calculations, are omitted to emphasize kinematical effects. Because recent authors have used different names and symbols for stress and strain tensors, it has been found necessary to give a self contained if abbreviated development of the kinematics, which, however, allows a compact discussion of constitutive equations.

More Details

Formation of catalysts in inverse micelles

Wilcoxon, Jess P.

We report formation of several small colloidal metal catatlysts in inverted micelle (oil-continuous) systems. These materials have demonstrated catalytic activity in situ (i.e. unsupported). The range of solvents possible in this process is large, including all saturated hydrocarbons, cyclic hydrocarbons (e.g. cyclohexane) and aromatics (e.g. toluene, xylene). Three classes of micelle system were investigated, nonionic, anionic, and cationic. Nonionic types allow precise size control but in general do not act as strong stabilizing agents at high temperatures. Cationics can be chosen to provide this permanent stability, providing both charge and steric stabilization. Metal systems formed include Rh, Ni, NiB, MoO{sub 2}, Pd, Au and Ag and alloys. Selected examples are given. 4 figs.

More Details

Core structure heat-up and material relocation in a BWR short-term station blackout accident

Schmidt, Rodney C.

This paper presents an analytical and numerical analysis which evaluates the core-structure heat-up and subsequent relocation of molten core materials during a NWR short-term station blackout accident with ADS. A simplified one-dimensional approach coupled with bounding arguments is first presented to establish an estimate of the temperature differences within a BWR assembly at the point when structural material first begins to melt. This analysis leads to the conclusions that the control blade will be the first structure to melt and that at this point in time, overall temperature differences across the canister-blade region will not be more than 200 K. Next, a three-dimensional heat-transfer model of the canister-blade region within the core is presented that uses a diffusion approximation for the radiation heat transfer. This is compared to the one-dimensional analysis to establish its compatibility. Finally, the extension of the three-dimensional model to include melt relocation using a porous media type approximation is described. The results of this analysis suggest that under these conditions significant amounts of material will relocate to the core plate region and refreeze, potentially forming a significant blockage. The results also indicate that a large amount of lateral spreading of the melted blade and canister material into the fuel rod regions will occur during the melt progression process. 22 refs., 18 figs., 1 tab.

More Details

Fatigue reliability of wind turbine components

Veers, Paul S.

Fatigue life estimates for wind turbine components can be extremely variable due to both inherently random and uncertain parameters. A structural reliability analysis is used to qualify the probability that the fatigue life will fall short of a selected target. Reliability analysis also produces measures of the relative importance of the various sources of uncertainty and the sensitivity of the reliability to each input parameter. The process of obtaining reliability estimates is briefly outlined. An example fatigue reliability calculation for a blade joint is formulated; reliability estimates, importance factors, and sensitivities are produced. Guidance in selecting distribution functions for the random variables used to model the random and uncertain parameters is also provided. 5 refs., 9 figs., 1 tab.

More Details

Status of concentrator collector and high-efficiency concentrator cell development

Gee, J.M.

Photovoltaic concentrator collectors are an attractive option for utility-scale photovoltaic power plants. This paper reviews the current status of photovoltaic concentrator collector and cell development. Included in the review is a discussion of the economic motivation for concentrators, a summary of recent concentrator collector and cell development, and a description of a major new program to accelerate development and commercial introduction of concentrator collectors. 21 refs., 1 fig., 3 tabs.

More Details

Video motion detection for physical security applications

Matter, John C.

Physical security specialists have been attracted to the concept of video motion detection for several years. Claimed potential advantages included additional benefit from existing video surveillance systems, automatic detection, improved performance compared to human observers, and cost effectiveness. In recent years significant advances in image processing dedicated hardware and image analysis algorithms and software have accelerated the successful application of video motion detection systems to a variety of physical security applications. Currently Sandia is developing several advanced systems that employ image processing techniques for a broader set of safeguards and security applications. TCATS (Target Cueing and Tracking System) uses a set of powerful, flexible, modular algorithms and software to alarm on purposeful target motion. Custom TCATS hardware optimized for perimeter security applications is currently being evaluated with video input. VISDTA (Video Imaging System for Detection, Tracking, and Assessment) uses some of the same TCATS algorithms and operates with a thermal imager input. In the scan mode, VISDTA detects changes in a scene from the previous image at a given scan point; in the stare mode, VISDTA detects purposeful motion similar to TCATS.

More Details

Adhesion at ceramic interfaces

Michalske, Terry A.

Many of the properties associated with ceramic materials such as high hardness, high dielectric constant, refractoriness, and good optical properties will play a critical role in the development of devices for new and emerging technologies. In many cases, the combination of properties that is required demands that a composite material be designed to fulfill these complex materials needs. The increasing emphasis upon composite materials design and performance necessarily focuses greater attention upon the structure and properties of interfaces in ceramic materials. One on the most important aspects of interfacial behavior is the adhesive stability. As an example, high hardness ceramic coatings for tribological applications require a high degree of interfacial adhesion with the underlying substate material. Alternatively it has been shown that fiber reinforced ceramic composites that are designed for high fracture toughness must contain weak interfaces that allow for fiber pull-out to toughen the instrinsically brittle ceramic matrix. Our ability to design ceramic interfaces for specific interfacial adhesive behavior dictates that we develop a full understanding of the factors that control the adhesive bond in these systems. We report on the use of continuum fracture mechanics techniques to identify the molecular source of adhesion between oxide surfaces and introduce a new approach to measuring interfacial adhesive forces using an Interfacial Force Microscope.

More Details

Joint computational/experimental aerodynamics research on a reentry vehicle

Oberkampf, W.L.; Aeschliman, D.P.

Although computational aerodynamics simulation has been taking more responsibility during recent years, wind tunnel experimentation has continued to play the major role in flight vehicle analysis and design.This role, however, is changing because of the great strides in the capability and confidence in numerical simulations. For a small, well defined, class of supersonic and hypersonic flow problems, high quality numerical solutions are now believed to represent the physics of the problem more accurately than a wind tunnel experimental can simulate the free flight conditions. An example of this is the supersonic or hypersonic, laminar, perfect gas flow over a spherically blunted cone at low angle of attack. In this paper, aerodynamic force and moment measurements and flow visualization results are presented for a reentry vehicle configuration at Mach 8. All of the results were obtained in the Sandia Mach 8 long duration, blow-down, hypersonic wind tunnel. The basic vehicle configuration is a spherically blunted cone with a slice parallel with the axis of the vehicle. Onto the slice portion of the vehicle can be attached flaps with three different deflection angles, 10, 20 and 30 deg. Flow visualization results include surface oil flow, spark Schlieren, and liquid crystal photographs. 1 ref., 7 figs.

More Details

A theoretical investigation of effective surface recombination velocity in AlGaAs/GaAs heteroface solar cells

Gee, J.M.

An AlGaAs window layer is used in high-efficiency GaAs solar cells to reduce carrier recombination at the front surface. Free surfaces of III-V semiconductors have a high density of surface states that serve as recombination sites and create a depletion region at the front surface. We have performed a theoretical investigation of front-surface recombination that includes the effect of a surface space-charge layer. It was found that the surface space-charge layer can have a profound effect on front-surface recombination for thin or lightly doped window layers. 15 refs., 5 figs., 1 tab.

More Details
Results 96051–96100 of 96,771
Results 96051–96100 of 96,771