In attempt to ultimately control the characteristics of the PZT films, we have decided to investigate some of the basic chemistry associated with these solutions. Frequently, these solutions have been generated from Group IV metal alkoxides in acetic acid (HOAc). Therefore, studies of the simple reactivity between M(OCHMe2)4 (M = Ti, Zr) and HOAc have been undertaken. These reactions were monitored by 1H, 13C, 17O NMR, FT-IR, TGA/DTA, and single crystal X-ray studies. Films were produced from spin-coat deposition of crystalline material (from the titanium reaction) in toluene and aged solutions as well.
This paper describes three applications of the boundary element method and their implementations on the Intel Paragon supercomputer. Each of these applications sustains over 99 Gflops/s based on wall-clock time for the entire application and an actual count of flops executed; one application sustains over 140 Gflops/s! Each application accepts the description of an arbitrary geometry and computes the solution to a problem of commercial and research interest. The common kernel for these applications is a dense equation solver based on LU factorization. It is generally accepted that good performance can be achieved by dense matrix algorithms, but achieving the excellent performance demonstrated here required the development of a variety of special techniques to take full advantage of the power of the Intel Paragon.
Conference Record of the 1994 21st International Power Modulator Symposium, MODSYM 1994
Rohwein, G.J.; Babcock, S.R.
A compact, easily transportable, pulse generator has been developed for a variety of applications that require a pulse duration in the range of 1p sec., voltages from 150 to 300 KV and current levels from 2,000 to 3,000 amps. The generator has a simple cylindrical configuration and modular construction to facilitate assembly and service. The generator may be operated single-pulse or repetitively at pulse repetition rates to 50 Hz in a burst mode.
A wideband EMF' tester consisting of a high voltage modulator, transmission line, high voltage peaking switch, and a "EM test cell has been developed that delivers repetitive high frequency EMF' pulses to an RF-sealed double-test volume of about 1 k3. The pulse shape is rectangular, has a duration of 4 ns and a risetime of 120 ps. The system can be operated at pulse repetition rates up to 1500 Hz and electric field levels up to 125 kV/m. Both voltage and pulse rate are continuously adjustable over these ranges and may be operated in any combination.
High-temperature post-oxidation annealing of poly-Si/SiO2/Si structures such as metal-oxide-semiconductor capacitors and metal-oxide-semiconductor field effect transistors is known to result in enhanced radiation sensitivity, increased 1/f noise, and low field breakdown. We have studied the origins of these effects from a spectroscopic standpoint using electron paramagnetic resonance (EPR) and atomic force microscopy. One result of high temperature annealing is the generation of three types of paramagnetic defect centers, two of which are associated with the oxide close to the Si/SiO2 interface (oxygen-vacancy centers) and the third with the bulk Si substrate (oxygen-related donors). In all three cases the origin of the defects may be attributed to out-diffusion of O from the SiO2 network into the Si substrate with associated reduction of the oxide. We present a straightforward model for the interfacial region which assumes the driving force for O out-diffusion is the chemical potential difference of the O in the two phases (SiO2 and the Si substrate). Experimental evidence is provided to show that enhanced hole trapping and interface-trap and border-trap generation in irradiated high-temperature annealed Si/SiO2/Si systems are all related either directly, or indirectly, to the presence of oxygen vacancies.
Intersociety Energy Conversion Engineering Conference, 1994
Martinez, Gale M.
The Geothermal Heat Pump (GHP) concept was originally developed in the 1940's. Recently, because of increasing energy costs, utility interest, and the development of simple and durable ground source heat exchangers, GHP's have gained international attention as a proven means of energy conservation and electrical peak power demand reduction. GHP systems require installation of a buried heat exchanger to utilize the nearly constant ground temperature making them more efficient than conventional air source heat pumps. However, the high installation cost for both residential and commercial applications is a major obstacle to their market penetration. Sandia National Laboratories (SNL) through its sponsors, the Department of Energy (DOE) and the Department of Defense (DOD), has embarked on a research program to find ways to reduce GHP installation costs and improve performance, thereby increasing their market penetration. The major elements of the program are: data acquisition to quantify the performance of GHP's, research and development (R&D) of the ground source heat exchanger aimed at reducing installation costs, and support of DOE efforts to market the GHP concept. This paper describes the current status of our program, some experimental and analytical results, and plans for future activities.
Proceedings of the 4th International Conference on Computer Integrated Manufacturing and Automation Technology, CIMAT 1994
Chen, Pang C.
Path planning needs to be fast to facilitate real-time robot programming. Unfortunately, current planning techniques are still too slow to be effective, as they often require several minutes, if not hours of computation. To overcome this difficulty, we present an adaptive algorithm that uses past experience to speed up future performance. It is a learning algorithm suitable for automating flexible manufacturing in mirementally-changing environments. The algorithm allows the robot to adapt to its environment by having two ezperience manipulation schemes: For minor environmental change, we use an object-attached experience abstraction scheme to increase the Flexibility of the learned experience; for major environmental change, we use an on-demand experience repair scheme to retain those experiences that remain valid and useful. Using this algorithm, we can effectively reduce the overall robot planning time by re-using the computation result for one task to plan a path for another.
Proceedings - International Conference on Tools with Artificial Intelligence, ICTAI
Chen, Pang C.
Path planning needs to be fast to facilitate real-time robot programming. Unfortunately, current planning techniques are still too slow to be effective, as they often require several minutes, if not hours of computation. To overcome this difficulty, we present an adaptive algorithm that uses past experience to speed up future performance. It is a learning algorithm suitable for incrementally-changing environments such as those encountered in manufacturing of evolving prod-ucts and waste-site remediation. The algorithm allows the robot to adapt to its environment by having two experience manipulation schemes: For minor environmental change, we use an object-attached experience abstraction scheme to increase the flexibility of the learned experience; for major environmental change, we use an on-demand experience repair scheme to retain those experiences that remain valid and useful. Using this algorithm, we can effectively reduce the overall robot planning time by re-using the computation result for one task to plan a path for another.
Property scaling becomes an issue whenever heterogeneous media properties are measured at one scale but applied at another (i.e., data is collected at the core scale but analysis is conducted at the grid block scale). A research program has been established to challenge current understanding of property scaling with the aim of developing and testing models that describe scaling behavior in a quantitative manner. Scaling of constitutive rock properties is investigated through physical experimentation involving the collection of gas-permeability data measured over a range of discrete scales. The approach is to systematically isolate those factors that influence property scaling and investigate their relative contributions to overall scaling behavior. Two blocks of rock, each exhibiting differing heterogeneity structure, have recently been examined. The two samples were found to yield different scaling behavior, as exhibited by changes in the distribution functions and semivariograms. Simple models have been fit to the measured scaling behavior that are of similar functional form but of different magnitude.
A computer code has been developed to determine the size of a ground-launched, multistage missile which can intercept a theater ballistic missile before it leaves the atmosphere. Typical final conditions for the inteceptor are 450 km range, 60 km altitude, and 80 sec flight time. Given the payload mass (35 kg), which includes a kinetic kill vehicle, and achievable values for the stage mass fractions (0.85), the stage specific impulses (290 sec), and the vehicle density (60 lb/ft3), the launch mass is minimized with respect to the stage payload mass ratios, the stage burn times, and the missile angle of attack history subject to limits on the angle of attack (10 deg), the dynamic pressure (60,000 psf), and the maneuver load (200,000 psf deg). For a conical body, the minimum launch mass is approximately 1900 kg. The missile has three stages, and the payload coasts for 57 sec. A trade study has been performed by varying the flight time, the range, and the dynamic pressure limits. With the results of a sizing study for a 70 lb payload and qmar = 35,000 psf, a more detailed design has been carried out to determine heat shield mass, tabular aerodynamics, and altitude dependent thrust. The resulting missile has approximately 100 km less range than the sizing program predicted primarily because of the additional mass required for heat protection. On the other hand, launching the same missile from an aircraft increases its range by approximately 100 km. Sizing the interceptor for air launch with the same final conditions as the ground-launched missile reduces its launch mass to approximately 1000 kg.
A dual-element, stretched-membrane central receiver heliostat was designed and manufactured in 1989, by a private US company engaged in the development of commercial central receiver solar technology. The two-module collector, with a collection area of 97.5 m{sup 2}, extends stretched-membrane mirror technology on several fronts with face-down stow capability and a digital controller that integrates tracking and focusing control on a single programmable control board. The solar collector was installed at Sandia`s National Solar Thermal Test Facility in Albuquerque, New Mexico and evaluated over a three-and-a-half year period which ended in September 1993. The measured performance and the operational and maintenance characteristics of this commercial prototype are the subject of this report. The results of beam quality measurements, tracking repeatability tests, measurements of beam movement in elevated winds, performance tests of the focusing system, and all-day beam quality and tracking tests are presented, and the authors offer a detailed discussion of the knowledge gained through operation and maintenance and of the improvements made or suggested to the heliostat`s design.
This report presents the results of an inspection around fastener holes in simulated lap splice specimens using a Nortec-30 Eddyscan inspection system. The inspector performing the tests had no prior knowledge of the extent or location of cracks in the specimens examined. The results of the inspection are presented in terms of various probability of detection curve models and are compared to various other eddy current inspections performed on the same set of test specimens. Results indicate that the system is capable, with high confidence, of detecting 60 to 70 mil cracks from under countersink fasteners.
This report presents a provisional lifetime prediction method which attempts to account for creep- fatigue interactions typically encountered in the design of solar central receivers that spend a considerable fraction of their operating periods subjected to compressive stresses at elevated temperature. During its operating life, a solar central receiver will be exposed to a large number of startup/shut- down cycles (relative to other power-producing systems), along with only short periods (up to 10-12 hrs.) of steady-state operation during each daily cycle. As such, fatigue-related deformation is expected to dominate the damage leading to failure in the high temperature alloys used for such as receiver. Thus, the provisional method concentrates on a fatigue-based damage approach, with direct accounting for the effects of thermo-mechanical fatigue and hold times at elevated temperatures. Note that creep damage is treated in an implicit way only, by means of the hold time correction. The starting point for the methodology is the isothermal low cycle fatigue data set used to develop fatigue design curves for ASME Boiler and Pressure Vessel Code Case N-47. Since the original data were not available for materials of interest (316 Stainless Steel and Alloy 800H), we attempted to estimate the original data sets by stripping away the safety factors of 2 on Δϵ and 20 on N1 from the N-47 design curves. These "baseline data curves" for N1 versus Δϵ, which represent the mean low cycle fatigue properties for each alloy at a given temperature, are tabulated in the Appendix in both tabular format and by means of sixth-order polynomial equations. The baseline data curves are first reduced to account for the effects of frequency and hold time. Comparison of hold time data for both 316 SS and 800H have indicated that additional factors of safety are required to make the frequency and hold time reductions conservative for all data considered. Therefore, safety factors of 1.5 on Δϵ and 4.5 on N1 are used, and these are shown to give generally conservative predictions. Finally, reductions for thermomechanical fatigue damage are made which are a function of f, the fraction of thermally imposed strain to the total imposed strain. It is expected that the resulting fatigue design curves should yield reasonable life predictions for the design of solar central receivers.
Performance assessment calculations are based on geochemical models that assume that interactions among radionuclides, rocks and groundwaters under natural conditions, can be estimated or bound by data obtained from laboratory-scale studies. The data include radionuclide distribution coefficients, measured in saturated batch systems of powdered rocks, and retardation factors measured in short-term column experiments. Traditional approaches to model validation cannot be applied in a straightforward manner to the simple reactive transport models that use these data. An approach to model validation in support of performance assessment is described in this paper. It is based on a recognition of different levels of model validity and is compatible with the requirements of current regulations for high-level waste disposal. Activities that are being carried out in support of this approach include (1) laboratory and numerical experiments to test the validity of important assumptions inherent in current performance assessment methodologies,(2) integrated transport experiments, and (3) development of a robust coupled reaction/transport code for sensitivity analyses using massively parallel computers.
We report the synthesis and optical properties of Rb[Ti{sub 1-2x}Ln{sub x}Nb{sub x}]OAsO{sub 4}. The solid solubility of lanthanide ions in the materials decreases exponentially as the size of the lanthanide ion increases. The materials exhibit absorption spectra characteristic of the particular lanthanide ion in the structure. The spectral regions between absorption peaks are transparent and will allow the transmission of fundamental and second-harmonic radiation. The charge transfer band is red-shifted 0 to 27 nm relative to RbTiOAsO{sub 4} (midpoint 331 nm). Second-harmonic intensities measured at 532 nm decrease exponentially as lanthanide ion concentration increases.
Saturation profiles resulting from TOUGH2 numerical simulations of water infiltration into a tuff matrix from a saturated vertical fracture have been compared to experimental results. The purpose was to determine the sensitivity of the infiltration on local heterogeneities and different representations of two-phase characteristic curves used by the model. Findings indicate that the use of simplified (linearized) capillary pressure curves with rigorous (van Genuchten) relative permeability curves resulted in a more computationally efficient solution without a loss in accuracy. However, linearized forms of the relative permeability functions produced poor results, regardless of the form of the capillary pressure function. In addition, numerical simulations revealed that the presence of local heterogeneities in the tuff caused non-uniform saturation distributions and wetting fronts in the in matrix.
As Sandia National Laboratories and the Physical and Chemical Sciences Center develop an increasingly diverse set of customers, research partners, and Cooperative Research and Development Agreements (CRADA`s) with industry, there is a need for providing more concise information describing their technical achievements and capabilities. This publication, Research Briefs, is designed to inform the present and potential partners in research and technology advancement. Their research emphasizes semiconductor physics, electronic materials, surface physics and chemistry, plasma and chemical processing sciences, lasers and optics, vision science, ion-solid interactions and defect physics, and advanced materials physics. The specific programs they pursue are driven by the research goals which are greatly influenced by interactions with the government and industrial customers.
Tests were performed to evaluate the corrosivity of several nitrate salt mixtures on the containment materials likely to be used in a molten-salt solar central receiver power plant. Objective was to determine if common salt impurities (e.g., chloride) aggravate corrosion. The test was conducted for 7008 hours on A36 carbon steel at 320C and 304 and 316 stainless steels at 570C. Seven salt mixture containing a variety of impurity concentrations were used. Corrosion rates were determined by descaled weight loss for coupons removed periodically from the melts. The nitrate mixtures were analyzed for changes in impurity levels and accumulation of soluble corrosion products. Test results indicate generally that corrosion is slow and that impurities do not contribute dramatically to corrosion rates of carbon and stainless steels.
Mazzoldi, P.; Gonella, F.; Arnold, G.W.; Battaglin, G.; Bertoncello, R.
Ion implantation in insulators causes modifications in the refractive-index as a result of radiation damage, phase separation, or compound formation. As a consequence, light waveguides may be formed with interesting applications in the field of optoelectronics. Recently implantation of metals ions (e.g. silver, copper, gold, lead,...) showed the possibility of small radii colloidal particles formation, in a thin surface layer of the glass substrate. These particles exhibit an electron plasmon resonance which depends on the optical constants of the implanted metal and on the refractive-index of the glass host. The non-linear optical properties of such colloids, in particular the enhancement of optical Kerr susceptibility, suggest that the, ion implantation technique may play an important role for the production of all-optical switching devices. In this paper an analysis of the state-of-the-art of the research in this field will be presented in the framework of ion implantation in glass physics and chemistry.
Copper implantations (90 keV, 5{times}10{sup 16} ions/cm{sup 2}) were made into fused silica, borosilicate glasses and soda-lime glass. The copper distribution has been found to vary according to glass type. The optical absorption band characteristic of the implanted metal optical properties was observed only for copper-implanted fused silica. Absorption for all the other samples was either not observable or was negligibly small, however very small metallic particles are present also in soda-lime glass. Subsequent nitrogen implantation (100 keV, 1.5{times}10{sup 17} ions/cm{sup 2}) completely eliminated the copper-colloid induced absorption in the copper-implanted fused silica, while it facilitated formation of copper-colloids in soda-lime glass.
One important application for the Fe-29Ni-17Co (Kovar{trademark}) alloy in wire form is in brazed feed through assemblies which are integral parts of vacuum electronic devices. Since Cu metal brazes are performed at process temperatures of about 1100{degrees}C, there is opportunity for significant grain growth to occur during the brazing operation. Additional high temperature exposure includes decarburization of the Fe-29Ni-17Co alloy wire in wet hydrogen for 30 min. at 1000{degrees}C prior to the Cu brazing operation. Two approaches have been used to characterize grain growth in two lots of Fe-29Ni-17Co alloy: (1) a once-through processing study to study the effect of one-time-only device thermal processing on the resulting grain size, and (2) an isothermal grain growth study involving various times at 800--1100{degrees}C. The results of the once-through processing study indicate that acceptable grain sizes are obtained from both cold worked and mill-annealed wire lots following Cu brazing. The isothermal grain growth study indicates that the linear intercept distance for Fe-29Ni-17Co can be described with a power law function of time, and that thermal exposure must be controlled at temperatures in excess of 900{degrees}C in order to avoid excessive grain growth. A second study has characterized the oxidation kinetics of Fe-29Ni-17Co alloy wire in air at temperatures ranging from 550--700{degrees}C. This study indicates the parabolic growth law applies for this material, and between 550 and 700{degrees}C, oxidation in this alloy occurs at an activation energy of 27.9 kcal/mole. Other oxidation studies at higher temperatures ({ge}750{degrees}C) indicate an activation energy of 52.2 kcal/mole for oxidation of Fe-29Ni-17Co alloy at temperatures greater than 790{degrees}C. Quantitative point analyses of the oxide scale formed at 600{degrees}C suggest that a significant fraction of the scale is close to the stoichiometry of the Fe{sub 2}O{sub 3}-type oxide.
The Natural Excitation Technique (NExT) was used to analyze STARS launch data during first and second stage flight using telemetered acceleration data. A continuous track of modal frequencies and modal damping was acquired for the first and second elastic modes of the system during first stage flight and for the first mode during second stage flight. The results from this modal analysis of launch data allowed a final quantification of the inherent bias errors which result from ground-based modal tests. Also, NExT is shown to be an important new tool for analyzing structural dynamics data during launch.
Alkylene-bridge polygerm- and polygermsilsequioxanes have been formed by hydrolysis-condensation of their corresponding (EtO){sub 3}M(CH{sub 2}){sub n}Ge(OEt){sub 3} monomers under HCl- and NEt{sub 3}-catalyzed conditions in ethanol. Solid state {sup 13}C and {sup 29}Si NMR indicate the retention of the alkylene bridging moiety during polymerization. The resulting aerogels are mesoporous materials with high surface areas. Incorporation of the short ethylene bridging unit results in higher surface areas than when heylene bridges are present. The porous nature of hexylene-bridged hybrid network [Si(CH{sub 2}){sub 6}GeO{sub 3}]{sub n} appears insensitive to the acidic or basic nature of the catalyst employed in it formation, in contrast to its polysilsesquioxane counterpart. Work is underway to determine the origin of porosity in these materials, and to characterize xerogel materials generated from these monomers.
The rate at which elements can be transported in groundwater systems is governed in part by the solubility of the element in the groundwater. This report documents plutonium solubility experiments in a brine simulant relevant to the Waste Isolation Pilot Plant. Approximately 1 to 2.5 mL of five stock solutions containing single oxidation states of plutonium (Pu(IV)-polymer, Pu{sup 3+}, Pu{sup 4+}, PuO{sub 2}{sup +}, and PuO{sub 2}{sup 2+}) were added to {approximately}75 mL of synthetic H-17 Brine in five reaction vessels. Initial plutonium concentrations ranged from 1.3 {times} l0{sup {minus}4} to 5.l {times} l0{sup {minus}4} M (moles per liter) total plutonium. Because these initial concentrations were far above the plutonium solubility limit in H-17 Brine, plutonium-containing solids precipitated. Aqueous plutonium concentrations were measured over time until steady-state was reached, requiring over 300 days in H-17 Brine.
The development of high peak power simulators, laser drivers, free electron lasers, and Inertial Confinement Fusion drivers is being extended to high average power short-pulse machines with the capabilities of performing new roles in environmental cleanup and industrial manufacturing processes. We discuss a new class of short-pulse, high average power accelerator that achieves megavolt electron and ion beams with 10`s of kiloamperes of current and average power levels in excess of 100 KW. Large treatment areas are possible with these systems because kilojoules of energy are available in each output pulse. These systems can use large area x-ray converters for applications requiring greater depth of penetration such as food pasteurization and waste treatment. The combined development of this class of accelerators and applications, at Sandia National Laboratories, is called Quantum Manufacturing.
This report discusses the possibility of human intrusion into the WIPP facility, an undergound disposal facility for alpha-bearing wastes. The probability of exploratory drilling occurring at the site is described.
Force reconstruction is a procedure in which the externally applied force is inferred from measured structural response rather than directly measured. In a recently developed technique, the response acceleration time-histories are multiplied by scalar weights and summed to produce the reconstructed force. This reconstruction is called the Sum of Weighted Accelerations Technique (SWAT). One step in the application of this technique is the calculation of the appropriate scalar weights. In this paper a new method of estimating the weights, using measured frequency response function data, is developed and contrasted with the traditional SWAT method of inverting the mode-shape matrix. The technique uses frequency response function data, but is not based on deconvolution. An application that will be discussed as part of this paper is the impact into a rigid barrier of a weapon system with an energy-absorbing nose. The nose had been designed to absorb the energy of impact and to mitigate the shock to the interior components.
This paper focuses on the development of an approximate time-optimal feedback strategy for conducting rest-to-rest maneuvers of a magnetically levitated table. Classical switching curves are modified to account for the complexities of magnetic actuation as well as the coupling of the rigid body modes through the control. A smooth blend of time-optimal and proportional-derivative controls is realized near the destination point to correct for inaccuracies produced by the approximate time-optimal strategy. Detailed computer simulations of the system indicate that this hybrid control strategy provides a significant reduction in settling time as compared to proportional-derivative control alone.
Arithmetic averaging is simple, stable, and can be very effective in attenuating the undesirable components in a complex signal, thereby providing smoothing or trend removal. An arithmetic average is easy to calculate. However, the resulting modifications to the data, in both the time and frequency domains, are not well understood by many experimentalists. This paper discusses the following aspects of averaging: (1) types of averages -- simple, cumulative, and moving; and (2) time and frequency domain effects of the averaging process.
Charge storage devices in which non-equilibrium depletion regions represent stored charge are sensitive to ionizing radiation. This results since the radiation generates electron-hole pairs that neutralize excess ionized dopant charge. Silicon structures, such as dynamic RAM or CCD cells are particularly sensitive to radiation since carrier diffusion lengths in this material are often much longer than the depletion width, allowing collection of significant quantities of charge from quasi-neutral sections of the device. For GaAs the situation is somewhat different in that minority carrier diffusion lengths are shorter than in silicon, and although mobilities are higher, we expect a reduction of radiation sensitivity as suggested by observations of reduced quantum efficiency in GaAs solar cells. Dynamic memory cells in GaAs have potential increased retention times. In this paper, we report the response of a novel GaAs dynamic memory element to transient ionizing radiation. The charge readout technique is nondestructive over a reasonable applied voltage range and is more sensitive to stored charge than a simple capacitor.
Ab initio electronic-structure calculations are combined with empirical bond-additivity corrections to yield thermochemical properties of gas-phase molecules. A self-consistent set of heats of formation for molecules in the Si-H, Si-H-Cl, Si-H-F, Si-N-H and Si-N-H-F systems is presented, along with preliminary values for some Si-O-C-H species.
Realistic computer prediction of high-velocity impact and penetration events involving composite materials requires a knowledge of the material behavior under large compressive stresses at high rates of deformation. As an aid to the development of constitutive models for composites under these conditions, methods for numerical simulation of the material response at the microstructural level are being developed. At present, the study is confined to glass fiber/epoxy composites. The technique uses a numerical model of a representative sample of the microstructure with randomly distributed fibers. By subjecting the boundary of this numerical sample to prescribed loading histories, a statistical interpretation allows prediction of the global material response. Because the events at the microstructural scale involve locally large deformation, and because of the constantly changing picture with regard to contact between the fibers, the Eulerian code CTH is used for these calculations. Certain aspects of material failure can also be investigated using this approach. The method allows the mechanical behavior of composite materials to be studied with fewer assumptions about constituent behavior and morphology than typically required in analytical efforts.
Experimental measurements of force into a ``rigid`` test item representing a typical system level vibration test were conducted to evaluate several methods of force measurements. The methods evaluated included: (1) Direct measurement with force gages between the test item and the fixturing; (2) Measurement of the force at the shaker/fixture interface and correcting the force required to drive the fixturing using two methods, (a) mass subtraction and (b) SWAT (sum of weighted accelerations technique), (3) Force deduced from voltage and current needed to drive the test item. All of the methods worked over a limited frequency range of five to a few hundred Hertz. The widest bandwidth was achieved with force at the shaker/fixture interface with SWAT corrections and from the voltage and current measurements.
Panitz, J.K.G.; Tallant, D.R.; Hills, C.R.; Staley, D.J.
Densifying non-mined diamond powder precursors with diamond produced by chemical vapor infiltration (CVI) is an attractive approach for forming thick diamond deposits that avoids many potential manufacturability problems associated with predominantly chemical vapor deposition (CVD) processes. The authors have developed two techniques: electrophoretic deposition and screen printing, to form nonmined diamond powder precursors on substrates. They then densify these precursors in a hot filament assisted reactor. Analysis indicated that a hot filament assisted chemical vapor infiltration process forms intergranular diamond deposits with properties that are to some degree different from predominantly hot-filament-assisted CVD material.
The National Center for Advanced Information Components Manufacturing (NCAICM) projects focus on manufacturing processes, materials, user facilities, standard tools, and equipment for large area emissive flat panel displays and microelectronics. Two types of projects are funded; (1) precompetitive projects done at the Center and (2) joint industry/national laboratory projects, which may carry intellectual property rights, where the work will be done at the appropriate industry or laboratory site. A summary of the NCAICM projects will be presented.
The organometallic chemical vapor deposition of transition metal carbides (M = Ti, Zr, Hf, and Cr) from tetraneopentyl-metal precursors has been carried out. Metal carbides can be deposited on Si, Al{sub 2}O{sub 3}, and stainless steel substrates from M[CH{sub 2}C(CH{sub 3}){sub 3}]{sub 4} at temperatures in the range of 300 to 750 C and pressures from 10{sup {minus}2} to 10{sup {minus}4} Torr. Thin films have also been grown using a carrier gas (Ar, H{sub 2}). The effects of variation of the metal center, deposition conditions, and reactor design on the resulting material have been examined by SEM, XPS, XRD, ERD and AES. Hydrocarbon fragments generated in the deposition chamber have been studied in by in-situ mass spectrometry. Complementary studies examining the UHV surface decomposition of Zr[CH{sub 2}C(CH{sub 3}){sub 3}]{sub 4} have allowed for a better understanding of the mechanism leading to film growth.
The Intelligent Systems and Robotics Center at Sandia National Laboratories is developing technologies for the automation of processes associated with environmental remediation and information-driven manufacturing. These technologies, which focus on automated planning and programming and sensor-based and model-based control, are used to build intelligent systems which are able to generate plans of action, program the necessary devices, and use sensors to react to changes in the environment. By automating tasks through the use of programmable devices tied to computer models which are augmented by sensing, requirements for faster, safer, and cheaper systems are being satisfied. However, because of the need for rapid cost-effective prototyping and multi-laboratory teaming, it is also necessary to define a consistent approach to the construction of controllers for such systems. As a result, the Generic Intelligent System Controller (GISC) concept has been developed. This concept promotes the philosophy of producing generic tool kits which can be used and reused to build intelligent control systems.
Neutron reflectivity is among the few techniques able to probe a buried interface. Through the use of isotopic labeling, complicated interface structures may be determined with a resolution on the order of 5 {angstrom}. However, for highly complex thin film and interface structures, it is often necessary to perform complementary experiments to reduce the number of unknown variables, and thus enable an unambiguous interpretation of the neutron reflectivity. To this end, the authors have combined X-ray and neutron reflectivity to study changes in a metal/polymer interface (molybdenum/polyurethane, hereafter Mo/PU) upon exposure to a humid environment. In particular, the authors have tracked the adsorption of moisture to the interface and variations in the density of the interphase. This information was obtained as a function of the concentration of a silane coupling agent added to the bulk of the PU. Adhesion of the Mo/PU interface is important to programs in the DOE complex. This paper reports the first results of this study.
A novel CFD/structural analysis was performed to predict functionality of a cross parachute under loadings near the structural limits of the parachute. The determination of parachute functionality was based on the computed structural integrity of the canopy and suspension lines. In addition to the standard aerodynamic pressure loading on the canopy, the structural analysis considered the reduction in fabric strength due to the computed aerodynamic heating. The intent was to illustrate the feasibility of such an analysis with the commercially available software PATRAN.
FALCON is a high-power, steady-state, nuclear reactor-pumped laser (RPL) concept that is being developed by the Department of Energy. The FALCON program has experimentally demonstrated reactor-pumped lasing in various mixtures of xenon, argon, neon, and helium at at wavelengths of 585, 703, 725, 1271, 1733, 1792, 2032, 2630, 2650, and 3370 nm with intrinsic efficiency as high as 2.5%. The major strengths of a reactor-pumped laser are continuous high-power operation, modular construction, self-contained power, compact size, and a variety of wavelengths (from visible to infrared). These characteristics suggest numerous applications not easily accessible to other laser types. A ground-based RPL could beam its power to space for such activities as illuminating geosynchronous communication satellites in the earth`s shadow to extend their lives, beaming power to orbital transfer vehicles, removing space debris, and providing power (from earth) to a lunar base during the long lunar night. The compact size and self-contained power also makes an RPL very suitable for ship basing so that power-beaming activities could be situated around the globe. The continuous high power of an RPL opens many potential manufacturing applications such as deep-penetration welding and cutting of thick structures, wide-area hardening of metal surfaces by heat treatment or cladding application, wide-area vapor deposition of ceramics onto metal surfaces, production of sub-micron sized particles for manufacturing of ceramics, wide-area deposition of diamond-like coatings, and 3-D ceramic lithography.
The purpose of this paper is to document a few of the many environmental information systems that currently exist worldwide. The paper is not meant to be a comprehensive list; merely a discussion of a few of the more technical environmental database systems that are available. Regulatory databases such as US Environmental Protection Agency`s (EPA`s) RODS (Records of Decision System) database [EPA, 1993] and cost databases such as EPA`s CORA (Cost of Remedial Action) database [EPA, 1993] are not included in this paper. Section 2 describes several US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) information systems and databases. Section 3 discusses several US EPA information systems on waste sites and technologies. Section 4 summarizes a few of the European Community environmental information systems, networks, and clearinghouses. And finally, Section 5 provides a brief overview of Geographical Information Systems. Section 6 contains the references, and the Appendices contain supporting information.
Sandia National Laboratories is a vertically multi-disciplined research and development laboratory with a long history of designing and developing d electro-mechanical products in the national interest. Integrating new technologies into the prototyping phase of our development cycle is necessary to reduce the cycle time from initial design to finished product. The introduction of rapid prototyping machines into the marketplace promises to revolutionize the process of producing prototype parts with relative speed and production-like quality. Issues of accuracy, feature definition, and surface finish continue to drive research and development of these processes. Sandia uses Stereolithography (SL) and Selective Laser Sintering (SLS) capabilities to support internal product development efforts. The primary use of SL and SLS is to produce patterns for investment casting in support of a Sandia managed program called FASTCAST that integrates computational technologies and experimental data into the investment casting process. These processes are also used in the design iteration process to produce proof-of-concept models, hands-on models for design reviews, fit-check models, visual aids for manufacturing, and functional parts in assemblies. This presentation will provide an overview of the SL and SLS processes and an update of our experience and success in integrating these technologies into the product development cycle. Also presented will be several examples of prototype parts manufactured using SL and SLS with a focus on application, accuracy, surface and feature definition.
An investigation has been performed to evaluate the capabilities of the Annular Core Research Reactor and its supporting Hot Cell Facility for the production of {sup 99}Mo and its separation from the fission product stream. Various target irradiation locations for a variety of core configurations were investigated, including the central cavity, fuel and reflector locations, and special target configurations outside the active fuel region. Monte Carlo techniques, in particular MCNP using ENDF B-V cross sections, were employed for the evaluation. The results indicate that the reactor, as currently configured, and with its supporting Hot Cell Facility, would be capable in meeting the current US demand if called upon. Modest modifications, such as increasing the capacity of the external heat exchangers, would permit significantly higher continuous power operation and even greater {sup 99}Mo production ensuring adequate capacity for future years.
The Automated Sensor Tester (AST) is being developed by Sandia National Laboratories for the Department of Energy (DOE) to be a tool to aid in testing exterior intrusion detection sensors in a fixed site security system. This is accomplished by automatically performing a simulated intrusion test of the sensors installed in the Perimeter Intrusion Detection and Assessment System (PIDAS). During the test, a target is moved across the detection zone of the sensor, simulating a human moving through the detection zone. The first phase of this project concentrated on automatically testing the bi-static microwave exterior intrusion detection sensor in one sector of a PIDAS. This sensor was selected because it is commonly used, and the test target has been determined and is presently in use. The goal of the AST project is to provide consistent test results, automatic data logging, easier data reduction and reduced manpower to perform the DOE mandated and frequent intrusion detection sensor tests. The AST will help to determine that the intrusion sensor being tested is functional and has even and adequate detection along its entire detection zone. The AST consists of two vehicles and a data logger. The Mother Vehicle contains the processing and navigation capability and deployed and retrieved the Target Vehicle. The Target Vehicle provided the alarm stimulus. The Alarm Interface/Data Logger was connected to the intrusion sensors alarm signal and recorded the test results. This system will autonomously conduct a series of tests on an entire PIDAS sector. This paper describes the three elements of the AST system and their operation.
We are studying the boron nitride system using a pulsed excimer laser to ablate from hexagonal BN (cBN) targets to form cubic BN (cBN) films. We are depositing BN films on heated (25--800C) Si (100) surfaces and are using a broad-beam ion source operated with Ar and N{sub 2} source gases to produce BN films with a high percentage of sp{sup 3}-bonded cBN. In order to optimize growth and nucleation of cBN films, parametric studies of the growth parameters have been performed. The best films to date show >85% sp{sup 3}-bonded BN as determined from Fourier-transform infrared (FTIR) reflection spectroscopy. High resolution transmission electron microscopy (TEM) and selected area electron diffraction confirm the presence of cBN in these samples. The films are polycrystalline and show grain sizes up to 30--40 mn. We find from both the FTIR and TEM analyses that the cBN content in these films evolves with growth time. Initially, the films are deposited as hBN and the cBN nucleates on this hBN underlayer. Importantly, the position of the cBN IR phonon also changes with growth time. Initially this mode appears near 1130 cm{sup {minus}1} and the position decreases with growth time to a constant value of 1085 cm{sup {minus}1}. Since in bulk cBN this IR mode appears at 1065 cm{sup {minus}1}, a large compressive stress induced by the ion bombardment is suggested. In addition, we report on the variation in cBN percentage with temperature.
The physical properties of in-situ produced composites, such as the TEOS-polysiloxane based systems, are directly related to the complex interaction of structural features from the nano- to macro-scopic scales. The nature of these structural interactions are a key element in understanding and controlling mechanical properties in these systems. We believe that the smallest scale structures, in the nanometer range, correlate with properties such as the modulus while large-scale structures on the micron scale effect failure in these materials. This paper discusses techniques for analysis of structural features and interrelation of structural features over these wide ranges of size using small-angle light, x-ray and neutron scattering. Combination of data from different instruments allows for characterization of the interaction between these different size scale features.
In 1992 and 1993, numerous innovative and emerging technologies for characterizing metal and mixed waste contaminants and their migration beneath landfills in and environments were field tested at Sandia`s Chemical Waste Landfill. Many of these technologies are being evaluated as part of the Landfill Characterization System (LCS). The LCS emphasizes minimally intrusive technologies and downhole sensors that strive to be cheaper, better, safer and faster than conventional methods. Major aims of the LCS are to demonstrate, test and evaluate these technologies, and determine whether substantial cost saving over traditional baseline methods can be realized. To achieve these goals, the LCS uses an integrated systems approach that stresses the application of complementary and compatible technologies. Successful field demonstrations combined with favorable economics, will greatly assist the commercialization of these technologies to the private sector and to Environmental Restoration groups throughout the DOE Complex. In this paper, a technical and economic evaluation of selected technologies that comprise the LCS is presented. Because sampling and analysis is the most costly part of a characterization effort, the economic evaluation presented here focuses specifically on these activities. LCS technologies discussed include the ``Smart Sampling Methodology`` and two field screening analytical methods, stripping voltammetry and x-ray fluorescence.