Publications

Results 92851–92875 of 99,299

Search results

Jump to search filters

Remote Optical Imagery of Obscured Objects in Low-Visibility Environments Using Parametric Amplification

Cameron, Stewart M.

The development of unconventional active optical sensors to remotely detect and spatially resolve suspected threats obscured by low-visibility observation conditions (adverse weather, clouds, dust, smoke, precipitation, etc.) is fundamental to maintaining tactical supremacy in the battlespace. In this report, the authors describe an innovative frequency-agile image intensifier technology based on time-gated optical parametic amplification (OPA) for enhanced light-based remote sensing through pervasive scattering and/or turbulent environments. Improved dynamic range characteristics derived from the amplified passband of the OPA receiver combined with temporal discrimination in the image capture process will offset radiant power extinction losses, while defeating the deugradative effects & multipath dispersion and ,diffuse backscatter noise along the line-of-sight on resultant image contrast and range resolution. Our approach extends the operational utility of the detection channel in existing laser radar systems by increasing sensitivity to low-level target reffectivities, adding ballistic rejection of scatter and clutter in the range coordinate, and introducing multispectral and polarization discrimination capability in a wavelen~h-tunable, high gain nonlinear optical component with strong potential for source miniaturization. A key advantage of integrating amplification and tlequency up-conversion functions within a phasematched three-wave mixing parametric device is the ability to petiorm background-free imaging with eye-safe or longer inilared illumination wavelengths (idler) less susceptible to scatter without sacrificing quantum efficiency in the detection process at the corresponding signal wavelength. We report benchmark laboratory experiments in which the OPA gating process has been successfidly demonstrated in both transillumination and reflection test geometries with extended pathlengths representative of realistic coastal sea water and cumulus cloud scenarios. In these experiments, undistorted range-gated optica[ images tiom specular and diffuse reflectance targets were acquired through scattering attenuations exceeding ten orders cf magnitude which would be undetectable with traditional optical methods. The broadcast and gating pulses were derived ilom both millijoules 10 Hz picosecond (50-100 ps) and 250 KHz microjoule femtosecond (-150 fs) laser configurations to assess signal-to-noise and spatiaI resolution considerations as a fimction of scattering, integration time, and repetition rate. In addition, the technique was combined with a self-referencing Shack-Hartrnann wavetiont sensor to dia=~ose underlying phase signatures of weak refictive index gradients (OPD-M1 00) or persistent convective wakes (exhaust plumes, bubbles), and to perform adaptive optical compensation in visual fields exhibiting both turbulence and turbidity (OD=4). Comparative system anaiysis results relating image quaiity, optimal gate width, detectable range, and broadcast laser size versus operative atmospheric scattering conditions and search/dwell probability of detection criteria will also be presented.

More Details

Effect of Temperature on GaGdO/GaN Metal Oxide Semiconductor Field Effect Transistors

Applied Physics Letters

Baca, Albert G.

GaGdO was deposited on GaN for use as a gate dielectric in order to fabricate a depletion metal oxide semiconductor field effect transistor (MOSFET). This is the fmt demonstration of such a device in the III-Nitride system. Analysis of the effect of temperature on the device shows that gate leakage is significantly reduced at elevated temperature relative to a conventional metal semiconductor field effeet transistor (MESFET) fabricated on the same GaN layer. MOSFET device operation in fact improved upon heating to 400 C. Modeling of the effeet of temperature on contact resistance suggests that the improvement is due to a reduction in the parasitic resistances present in the device.

More Details

300 Degree C GaN/AlGaN Heterojunction Bipolar Transistor

MRS Internet Nitride Journal

Baca, Albert G.

A GaN/AIGaN heterojunction bipolar transistor has been fabricated using C12/Ar dry etching for mesa formation. As the hole concentration increases due to more efficient ionization of the Mg acceptors at elevated temperatures (> 250oC), the device shows improved gain. Future efforts which are briefly summarized. should focus on methods for reducing base resistance.

More Details

Quantitative Determination of Dielectric Thin-Film Properties Using Infrared Emission Spectroscopy

Applied Spectroscopy

Haaland, David M.

We have completed an experimental study to investigate the use of infrared emission spectroscopy (IRES) for the quantitative analysis of borophosphosilicate glass (BPSG) thin films on silicon monitor wafers. Experimental parameters investigated included temperatures within the range used in the microelectronics industry to produce these films; hence the potential for using the IRES technique for real-time monitoring of the film deposition process has been evaluated. The film properties that were investigated included boron content, phosphorus content, film thickness, and film temperature. The studies were conducted over two temperature ranges, 125 to 225 *C and 300 to 400 *C. The later temperature range includes realistic processing temperatures for the chemical vapor deposition (CVD) of the BPSG films. Partial least squares (PLS) multivariate calibration methods were applied to spectral and film property calibration data. The cross-validated standard errors of prediction (CVSEP) fi-om the PLS analysis of the IRES spectraof21 calibration samples each measured at 6 temperatures in the 300 to 400 "C range were found to be 0.09 wt. `?40 for B, 0.08 wt. `%0 for P, 3.6 ~m for film thickness, and 1.9 *C for temperature. By lowering the spectral resolution fi-om 4 to 32 cm-l and decreasing the number of spectral scans fi-om 128 to 1, we were able to determine that all the film properties could be measured in less than one second to the precision required for the manufacture and quality control of integrated circuits. Thus, real-time in-situ monitoring of BPSG thin films formed by CVD deposition on Si monitor wafers is possible with the methods reported here.

More Details

Damage to III-V Devices During Electron Cyclotron Resonance Chemical Vapor Deposition

Journal of Vacuum Science and Technology A

Shul, Randy J.

GaAs-based metal semiconductor field effect transistors (MESFETS), heterojunction bipolar transistors (HBTs) and high electron mobility transistors (HEMTs) have been exposed to ECR SiJ&/NH3 discharges for deposition of SiNX passivating layers. The effect of source power, rf chuck power, pressure and plasma composition have been investigated. Effects due to both ion damage and hydrogenation of dopants are observed. For both HEMTs and MESFETS there are no conditions where substantial increases in channel sheet resistivity are not observed, due primarily to (Si-H)O complex formation. In HBTs the carbon-doped base layer is the most susceptible layer to hydrogenation. Ion damage in all three devices is minimized at low rf chuck power, moderate ECR source power and high deposition rates.

More Details

Performance Assessment in Support of the 1996 Compliance Certification Application for the Waste Isolation Pilot Plant

Risk Analysis

Anderson, D.R.

The conceptual and computational structure of a performance assessment (PA) for the Waste Isolation Pilot Plant (WIPP) is described. Important parts of thk structure are @ maintenance of a separation between stochastic (i.e., aleatory) and subjective (i.e., epistemic) uncertain, with stochastic uncefinty arising from the many possible disruptions that could occur over the 10,000 Y regulatory period fiat applies to the WIPP and subjective uncertainty arising from `the imprecision with which many of the quantities rquired in tie `hdysis are known, (ii) use of Latin hypercttbe sampling to incorporate the effects of subjective uncefirtty, (iii) use of Monte Carlo (i.e., random) sampling to incorporate the effects of stochastic uncetinty, and OV) efficient use of tie necessarily limited number of mechanistic calculations that can be performed to SUPPOII the analysis. The WIPP is under development by the U.S. Department of Ener~ (DOE) for the geologic (i.e., deep underground) disposal of transuranic (TRU) waste, with the indicated PA supporting a ~Compliance Certification Application (CCA) by the DOE to the U.S. Environmental Protection Agency (EPA) in October 1996 for tie necessary certifications for the WIPP to begin operation. If certified, the WIPP will be the first operational faciliv in tie United States for the geologic disposal of ra&oactive waste.

More Details

Distinguishability of Biological Material Using Ultraviolet Multi-Spectral Fluorescence

Science

Gray, P.C.; Heinen, R.J.; Rigdon, L.D.; Rosenthal, S.E.; Shokair, I.R.; Siragusa, G.R.; Tisone, G.C.; Wagner, J.S.

Recent interest in the detection and analysis of biological samples by spectroscopic methods has led to questions concerning the degree of distinguishability and biological variability of the ultraviolet (W) fluorescent spectra from such complex samples. We show that the degree of distinguishability of such spectra is readily determined numerically.

More Details

GaN Stress Evolution During Metal-Organic Chemical Vapor Deposition

Applied Physics Letters

Floro, Jerrold A.

The evolution of stress in gallium nitride films on sapphire has been measured in real- time during metal organic chemical vapor deposition. In spite of the 161%0 compressive lattice mismatch of GaN to sapphire, we find that GaN consistently grows in tension at 1050"C. Furthermore, in-situ stress monitoring indicates that there is no measurable relaxation of the tensile growth stress during annealing or thermal cycling.

More Details

Spatially Resolved Atomic and Molecular Spectroscopy in Microelectronics Processing Plasmas

Hebner, Gregory A.

Plasma processing of microelectronic materials is strongly dependent on the generation and control of neutral radial and ion species generated in a plasma. For example, process uniformity across a #er is drken by a combination of plasma charged particle and neutral uniformity. Due to extensive rexarch and engineering the current generation of commercial plasma reactors can generate very radially uniform ion distributions, usually better than ~ 2 perwnt as determined by ion saturation measurements. Due in part to the difficulty associated with determining the neutral radial distributions, control of the neutral radical uniformity is less well developed. This abstract will review our recent measurements of the spatial distribution of severaI important atomic and molecukw species in inductively coupled plasmas through C12 / BCIJ / Ar containing gas mixtures. Measured species include the ground state Cl and BC1 densities as well as the metastable argon density. The fbeus of this review will be on the experimental techniques and results. In addition to assisting in the development of a fbndarnental understanding of the important pkunna physics, these measurements have been used to benchmark multi dimensional plasma discharge codes.

More Details

Transformation of Pb(II) from Cerrusite to Chloropyromorphite in the Presence of Hydroxyapatite under Varying Conditions of pH

Environmental Science and Technology

Zhang, Pengchu

Cerrusite (PbC03) is soluble under acidic conditions and considered to be a highly bioavailable soil Pb species. In this study, synthetic cerrusite and hydroxyapatite [Ca5(P04)30H] were reacted under constant and dynamic pH conditions with various P/Pb molar ratios in an attempt to evaluate the effect of reaction kinetics on the formation of chloropyromorphite (Pb5(P04)3Cl) and solubilization of Pb. Under constant pH conditions, dissolution rates of both cerrusite and apatite were rapid when pH was low. Complete conversion of Pb from cerrusite to chloropyromorphite occurred within 60 tin at pH 4 and below when the amount of phosphate in the added apatite was stoichoimetrically equal to that needed to transform all added Pb into chloropyromorphite. The concentration of soluble Pb depended upon the volubility of chloropyromorphite. The dissolution rates of apatite and cerrusite decreased with increasing pH, and the transformation was incomplete at pH 5 and above in the 60 rnin reaction period. The soluble Pb level, therefore, was determined by the volubility of cerrusite. In the dynamic pH system which simulated the gastrointestinal tract (GI tract) system, a complete transformation of Pb from cerrusite to chloropyromorphite was achieved due to the complete dissolution of apatite and cerrusite at the initial low pHs. Chloropyromorphite was the exclusive reaction product in both constant and dynamic pH systems as indicated by XRD analysis. The differences in transformation rate and the control of Pb volubility between the reactions occurring in constant and dynamic pH systems indicate the significance of kinetics in controlling the bioavailability of Pb and the potential for the reaction to occur during ingestion.

More Details

Formation of Chloropyromorphite from Galena (PbS) in the Presence of Hydroxyapatite

Environmental Science and Technology

Zhang, Pengchu

Transformation of unstable lead [Pb(ll)] forms into insoluble pyromorphite, [Pb5(P04)3(OH, Cl, F...)], by addition of phosphate to Pb contaminated soil has been proposed as a remediation technology which reduces the mobility and bioavailability of Pb. Under aerobic condition, oxidation of dissolved sulfide increases dissolution of galena (PbS), causing it to become a source of liable Pb forms in soils, sediments and wastes. Thus, a galena ore was reacted with synthetic hydroxyapatite [Ca5(P04)30H] under various pH condition to determine the formation rate of pyromorphite and the volubility of galena under the ambient conditions. In a 6 day reaction period the dissolution rate of galena increased with pH due to the oxidation of dissolved sulfide. Correspondingly, formation of chloropyrornorphite became apparent in the galena- apatite suspensions with increasing pH. The insignificant effect of mineral P/Pb molar ratio on the formation of chloropyromorphite implied that dissolution of galena was the rate limiting step.

More Details

The "Z" Pulsed Radiation Source: Recent Developments in Equation of State Measurement Capabilities

Asay, J.R.

The Sandia Z machine is a source of intense radiation which can be used to drive ablative shocks for equation of state studies. In developing the capability to diagnose these types of studies on Z, techniques commonly used in conventional impact generated experiments were leveraged. The primary diagnostic transferred was velocity interferome~, VLSAR, [1] which not only provides Hugoniot particle velocity measurements, but also indications of shock stability and wave attenuation. In addition to a VISAR capability on the Z machine, methods for measuring shock velocity have been developed. When these measured parameters are used in conjunction with the Rankine-Hugoniot jump conditions, [2] material response at high temperatures and pressures can be inferred. With sample sizes used on Z being much smaller than those fielded in typical impact experiments, temporal resolution and methods of interfacing the diagnostics with the targets had to be improved. In this paper, a "standard" equation of state experiment, associated diagnostics, and some recent results in aluminum and beryllium will be discussed.

More Details

Z-Pinch Drivers for Shock Physics Research

Asay, J.R.

The recent development of Z pinch drivers for producing intense radiation envkomn~ enables study of physical and mechanical properties of condensed materials in regimes previously inaccessible in the Mm-am-y. With Z pinch radiation sources, it is possible fo subject mm-sized sampies to pianar compressions of a fe w Mbar. Tie-resolved velocity interferometry was used to perform the first shock loading and unloading profiles in Al and Be for ablatively driven shock$s to 3 Mbar and the first iseritropic loading of iron specimens to 300 War. A principai goai of our shock physics program is to establish a capability to make accurats eqwion of state measurements on the Z pulsed radiation source. The Z accelerator is a source of intense radntion, which can be used to drive ablative shocks for E(X$ studies. With this source, ablative muki-Mbar shocks can be produced to study materials over the range of interest to both weapons and ICF physics programs. In developing the capability to diagnose these types of studies on Z, techniques commonly used in conventional impact generated experiments were implemented. The primary diagnostic presently being used for this work is ve"!ocity interferoinetry, VL%4R, [2] which not only provides Hugoniot particle velocity measurements, but also measurements of non-shock EOS measummenu,, such as isentropic compression. In addition to VKSAR capability, methods for measuring shock velocity have also been developed for shock studies on Z. When used in conjunction with the Rankine-Hugoniot jump conditions, material response at high temperatures and pressures can be inferred. The next section discusses the basic approach for conducting EOS experiments on Z for both shock loading and istmtropic compression on the Z accelerator.

More Details

Tethered Chains in Poor Solvent Conditions: An Experimental Study Involving Langmuir Diblock Copolymer Monolayers

Journal of Chemical Physics

Kent, Michael S.

We have employed Langmuir monolayer of highly asymmetric polydimethylsiloxane- polystyrene (PDMS-PS) diblock copolymers on dioctyl phthalate (DOP) at temperatures ranging from 22 "C to -35 `C as a model system for tethered chains in poor solvent conditions. The thicknesses of the tethered PS layers extending into the DOP subphase, measured by neutron reflection, decrease with decreasing temperature (T) over this entire r~ge. However, the v~iation with T becomes weak below -20 "C. At the ]owest T, the layer thicknesses are contracted 55 % -75 `% of their values at the theta condition (T8 = 22 "C), but are still quite swollen compared to the fully collapsed, nonsolvent limit. The contraction of the layer with decreasing T is determined as a function of surface density and molecular weight. These data are compared to universal scaling forms. The PS segments are depleted from the air surface over the entire T range, the thickness of the depletion layer increasing slightly with decreasing T. The free energy of the surface layer is probed by surface tension measurements. Negative surface pressures are observed at low coverages for both PDMS-PS and PDMS monolayer, indicating metastability toward lateral phase separation. Evidence for a trruisition from a dispersed phase to a condensed phase with decreasing T was observed in the reflectivity at very low PDMS-PS coverage.

More Details

W and WSi(x) Ohmic Contacts on p- And n-Type GaN

Journal of Vacuum Science and Technology A

Shul, Randy J.

W and WSi ohmic contacts on both p- and n-type GaN have been annealed at temperatures from 300-1000 *C. There is minimal reaction (< 100 ~ broadening of the metal/GaN interface) even at 1000 *C. Specific contact resistances in the 10-5 f2-cm2 range are obtained for WSiX on Si-implanted GaN with a peak doping concentration of- 5 x 1020 cm-3, after annealing at 950 `C. On p-GaN, leaky Schottky diode behavior is observed for W, WSiX and Ni/Au contacts at room temperature, but true ohmic characteristics are obtained at 250 - 300 *C, where the specific contact resistances are typically in the 10-2 K2-cm2 range. The best contacts for W and WSiX are obtained after 700 *C annealing for periods of 30- 120 sees. The formation of &WzN interracial phases appear to be important in determining the contact quality.

More Details

Mechanisms and modeling of single-event upset

Dodd, Paul E.

The basic mechanisms of single-event upset are reviewed, including charge collection in silicon junctions and transistors, and properties of single-event upset in CMOS static random access memory (SRAM) cells. The mechanisms are illustrated through the use of three-dimensional device and circuit simulations. Technology trends and implications for commercial devices are discussed.

More Details

Growth of Highly-Oriented Carbon Nanotubes by Plasma-Enhanced Hot Filament Chemical Vapor Deposition

Applied Physics Letters

Siegal, Michael P.

Highly-oriented, multi-walled carbon nanotubes were grown on polished polycrystalline and single crystal nickel substrates by plasma enhanced hot filament chemical vapor deposition at temperatures below 666"C. The carbon nanotubes range from 10 to 500 nm in diameter and 0.1 to 50 pm in length depending on growth conditions. Acetylene is used as the carbon source for the growth of the carbon nanotubes and ammonia is used for dilution gas and catalysis. The plasma intensity, acetylene to ammonia gas ratio and their flow rates, etc. affect the diameters and uniformity of the carbon nanotubes. In summary, we synthesized large-area highly-oriented carbon nanotubes at temperatures below 666C by plasma-enhanced hot filament chemical vapor deposition. Acetylene gas is used to provide carbon for nanotube growth and ammonia gas is used for dilution and catalysis. Plasma intensity is critical in determining the nanotube aspect ratios (diameter and length), and range of both site and height distributions within a given film.

More Details

Monolayer-Mediated Patterning of Electroceramic Thin Films

Journal of Electroceramics

Clem, Paul

Integrated electroceramic thin film devices on semiconductor and insulator substrates feature a variety of attractive attributes, including high capacitance density, nonvolatile memory, sensor/actuator ability, and other unique electronic and optical properties. The ability to pattern such ceramic materials atop semiconductor substrates, thus, is a critical technology. Patterned oxide thin film devices are typically formed by uniform film deposition followed by somewhat complicated post-deposition ion-beam or chemical etching in a controlled environment. We review here the development of an ambient atmosphere technique which allows selective deposition of electroceramic thin layers without such post-deposition etching. In this method, substrate surfaces are selectively functionalized with hydrophobic self-assembled monolayer to modify the adhesion of subsequently deposited solution-derived electroceramics. The selective fictionalization is achieved through microcontact printing (v-CP) of self-assembled monolayer of the chemical octadecyltrichlorosilane on substrates of technical interest. Subsequent sol-gel deposition of ceramic oxides on these functionalized substrates, followed by lift-off from the monolayer, yields high quality, patterned oxide thin layers only on the unfunctionalized regions. A variety of micron- scale dielectric oxide devices have been fabricated using this process, with lateral resolution as fine as 0.5Lm. In this paper, we review the monolayer patterning and electrical behavior of several patterned electroceramic thin films, including Pb(Zr,Ti)03 [PZT], LiNb03, and Ta205. An applied device example is also presented in combination with selective MOCVD deposition of metal electrodes: integrated, fully monolayer-patterned Pt//PZT//PSi(Si(100) ferroelectric memory cells.

More Details

Basic Data Report for Drillholes on the H-19 Hydropad (Waste Isolation Pilot Plant--WIPP)

Beauheim, Richard L.

Seven holes were drilled and wells (H-19b0, H-19b2, H-19b3, H-19b4, H-19b5, H-19b6, and H-19b7) were constructed on the H-19 hydropad to conduct field activities in support of the Culebra Transport Program. These wells were drilled and completed on the Waste Isolation Pilot Plant (WIPP) site during February to September 1995. An eighth hole, H-19b1, was drilled but had to be abandoned before the target depth was reached because of adverse hole conditions. The geologic units penetrated at the H-19 location include surficial deposits of Holocene age, rocks from the Dockum Group of Upper Triassic age, the Dewey Lake Redbeds, and Rustler Formation of the Permian age. The Rustler Formation has been further divided into five informal members which include the Forty-niner Member, Magenta Member, Tamarisk Member, Culebra Dolomite Member, and an unnamed lower member. The Rustler Formation, particularly the Culebra Dolomite Member, is considered critical for hydrologic site characterization. The Culebra is the most transmissive saturated unit above the WIPP repository and, as such, is considered to be the most likely pathway for radionuclide transport to the accessible environment in the unlikely event the repository is breached. Seven cores from the Culebra were recovered during drilling activities at the H-19 hydropad and detailed descriptions of these cores were made. On the basis of geologic descriptions, four hydrostratigraphic units were identified in the Culebra cores and were correlated with the mapping units from the WFP air intake shaft. The entire length of H-19b1 was cored and was described in detail. During coring of H-19b1, moisture was encountered in the upper part of the Dewey Lake Redbeds. A 41-ft-thick section of this core was selected for detailed description to qualify the geologic conditions related to perched water in the upper Dewey Lake. In addition to cuttings and core, a suite of geophysical logs run on the drillholes was used to identify and correlate different lithologies among the seven wells.

More Details

Theoretical Limit to the Laser Threshold Current Density in an InGaN Quantume Well Laser

Applied Physics Letters

Chow, Weng W.

This paper describes an investigation of the spontaneous emission limit to the laser threshold current density in an InGaN quantum well laser. The peak gain and spontaneous emission rate as functions of carrier density are com- puted using a microscopic laser theory. From these quantities, the minimum achievable threshold current density is determined for a given threshold gain. The dependence on quantum well width, and the effects of inhomogeneous broadening due to spatial alloy variations are discussed. Also, comparison with experiments is made.

More Details

Plasma Heating in Highly Excited GaN/AlGaN Multiple Quantum Wells

Applied Physics Letters

Chow, Weng W.

Plasma Heating in Highly Excited GaN/AIGaN Multiple Quantum @@lvEu Wells w f + 1998 %p, K. C. Zeng, R. Mair, J. Y. Liz and H. X. Jiang a) ` fabrication and understanding of MQW lasers [2-5]. For the design of these lasers, one on RT optical studies. Our results revealed that in the GaN/AIGaN MQWS, plasma heating strongly effects the carrier distribution between the confined and unconfined band-to-band and fke excitonic transitions [7]. In the MQW sample under low the unconfined states as determined from the band structure. sample under high Lxc, we varied the excitation intensity by one order of magnitude from 0.110 to IO. The carrier density is estimated to be about N=1012/cm2 (at UC= 0.1 Io) to 1013/cm2 (at 1=== l.). We plotted the PL spectra for four representative excitation fimction of injected carrier density N (open squares). The ratio starts at a value of about 18% for N=1012/cm2 (& = O. lb), and reaches a value over 64 `XO for N=1013/cm2 (& = regions is a loss to optical gain. The carrier density is ve~ high in our experiment and an electron-hole plasma (EHP) state is expected. Because the carrier transfer process plasma temperature. The laser pump energy is about 4.3 eV, which is far above the energy band gap of the sample studied here. This may result in a hot carrier population carrier densities and plasma temperatures. Using a phenomenological expression based The calculated ratio of carriers in the unconfked to the confined states (Ima~ kf) as a finction of carrier density at different temperatures are plotted in Fig. 3 (solid lines). The figure shows that the experiment results can only be explained by plasma heating of the injected carriers at high & ( TP > TJ. The transparency carrier densities for GaN/AIXGal.XN MQW structures with well thickness from 2 to 4 nm were calculated to be around 1x 1012/cm2 [10]. It is thus obvious from Fig. 3 that under high carrier injection density above the transparency density, the plasma temperature, TP, is no longer a constant. It rapidly increases with injected carrier density. Our results indicate that above the transparency carrier density, the carrier temperature may be a few due to the carrier plasma heating effect. Plasma heating makes it more difficult to obtain high quantum efficiency in the on improving the quantum efficiency of fiture GaN/AlxGalJ MQW laser structures, form an EHP and (b) plasma heating of the injected carriers strongly affects the carrier above the transparency density, the carrier plasma temperature may be a few hundred carrier density. The importance of plasma heating has both theoretical and experimental implications. It complicates the modeling of III-N lasers because plasma temperature The ratio of the PL intensities of the 25 ~ GaN/AIO.w&.mN MQW sample from fimction of injected carrier density. The open squares are experimental data and

More Details

Distributed Sensing and Cooperating Control for Swarms of Robotic vehicles

Hurtado, John E.

DISTRIBUTED SENSING AND COOPERATING CONTROL FOR SWARMS OF ROBOTIC VEHICLES Key words: Distributed Sensing, Cooperative Control. ABSTRACT We discuss an approach to effectively control a large swarm of autonomous, robotic vehicles, as they per- form a search and tag operation. In particular, the robotic agents are to find the source of a chemical plume. The robotic agents work together through dis- tributed sensing and cooperative control. Distributed sensing is achieved through each agent sampling and sharing his information with others. Cooperative con- trol h accomplished by each agent u-sing its neighbors information to determine an update strategy. INTRODUCTION There is currently considerable interest in expanding the role of robotic vehicles in surveillance and inspec- tion; searching, following and t aggir-g and locating and identifying targets. In particular, researchers are beginning to focus on using small autonomous robotic vehicles for these tasks. This focus has been brought about largely because of the many recent advances in microelectronics and sensors, which include small, low power, CCD cameras; small microprocessors with ex- panded capabilities; autonomous navigation systems using GPS; and severrd types of small sensors. It seems likely that these technological advances will lead to in- expensive, easy to fabricate, autonomous vehicles out- fitted with an array of sensors. This, in turn, will allow researchers to consider teams, or even swarms, of these agents to perform a particular task. It is natural then to wonder how one might effectively control a team, or even a swarm, of robotic agents. In this paper, we discuss an approach to effectively control a large swarm of autonomous, robotic vehicles as they perform a search and tag operation. In par- ticular, the robotic agents are to find the source of a chemical plume. The robotic agents work together through distributed sensing and cooperative control. Distributed sensing is achieved through each agent sampling and sharing his information with others. Co- operative control is accomplished by each agent using its neighbors information to determine a control (or TECHNICAL DEVELOPMENT In this section we highlight the technical development of our distributed sensing and cooperative control ap- proach to effectively control a large swarm of au- tonomous, robotic vehicles. Recall that the agents are tasked with locating the chemical plume source within a chemical plume field. In our simulations, we assume that the agents are outfitted with a GPS sensor, which provides their cur- rent location, and a chemical "sniffer," which allows them to detect the strength of the chemical plume at their current location. Furthermore, we assume that the robots have onboard processing capability, and are able to communicate with one another via RF modems together with bit packing and error correction tech- niques, like those discussed by Lewis et al [4]. Thus, each agent is able to communicate and share informa- tion with all others (i.e., there is global communica- tion). In this mode, at a particular instant in time, the agents sample the chemical plume field and post this information and their current location for the oth- ers. The agents then assemble the information and de- termine a projected target of where they believe the chemical source is located. The position update for each agent is then based upon its current position and the position of the projected target.

More Details

Micromachined Systems-on-a-Chip: Infrastructure, Technology and Applications

Krygowski, T.W.

A review is made of the infrastructure, technology and capabilities of Sandia National Laboratories for the development of micromechanical systems that have potential space applications. By incorporating advanced fabrication processes, such as chemical mechanical polishing, and several mechanical polysilicon levels, the range' of rrticromechanical systems that can be fabricated in these technologies is virtually limitless. Representative applications include a micro- engine driven mirror, and a micromachined lock. Using a novel integrated MEM!YCMOS technology, a six degree-of-freedom accelerometer/gyroscope system has been designed by researchers at U.C. Berkeley and fabricated on the same silicon chip as the CMOS control circuits to produce an integrated micro-navigational unit.

More Details
Results 92851–92875 of 99,299
Results 92851–92875 of 99,299