Publications

Results 51–100 of 111

Search results

Jump to search filters

Workshop on Advanced Computing for Connected and Automated Vehicles

Mailhiot, Christian; Severa, William M.; Moen, Christopher D.; Jones, Troy

To safely and reliably operate without a human driver, connected and automated vehicles (CAVs) require more advanced computing hardware and software solutions than are implemented today in vehicles that provide driver-assistance features. A workshop was held to discuss advanced microelectronics and computing approaches that can help meet future energy and computational requirements for CAVs. Workshop questions were posed as follows: will highly automated vehicles be viable with conventional computing approaches or will they require a step-change in computing; what are the energy requirements to support on-board sensing and computing; and what advanced computing approaches could reduce the energy requirements while meeting their computational requirements? At present, there is no clear convergence in the computing architecture for highly automated vehicles. However, workshop participants generally agreed that there is a need to improve the computing performance per watt by at least 10x to advance the degree of automation. Participants suggested that DOE and the national laboratories could play a near-term role by developing benchmarks for determining and comparing CAV computing performance, developing public data sets to support algorithm and software development, and contributing precompetitive advancements in energy efficient computing.

More Details

Neural Inspired Computation Remote Sensing Platform

Vineyard, Craig M.; Severa, William M.; Green, Sam; Dellana, Ryan; Plagge, Mark; Hill, Aaron

Remote sensing (RS) data collection capabilities are rapidly evolving hyper-spectrally (sensing more spectral bands), hyper-temporally (faster sampling rates) and hyper-spatially (increasing number of smaller pixels). Accordingly, sensor technologies have outpaced transmission capa- bilities introducing a need to process more data at the sensor. While many sophisticated data processing capabilities are emerging, power and other hardware requirements for these approaches on conventional electronic systems place them out of context for resource constrained operational environments. To address these limitations, in this research effort we have investigated and char- acterized neural-inspired architectures to determine suitability for implementing RS algorithms In doing so, we have been able to highlight a 100x performance per watt improvement using neu- romorphic computing as well as developed an algorithmic architecture co-design and exploration capability.

More Details

Composing neural algorithms with Fugu

ACM International Conference Proceeding Series

Aimone, James B.; Severa, William M.; Vineyard, Craig M.

Neuromorphic hardware architectures represent a growing family of potential post-Moore's Law Era platforms. Largely due to event-driving processing inspired by the human brain, these computer platforms can offer significant energy benefits compared to traditional von Neumann processors. Unfortunately there still remains considerable difficulty in successfully programming, configuring and deploying neuromorphic systems. We present the Fugu framework as an answer to this need. Rather than necessitating a developer attain intricate knowledge of how to program and exploit spiking neural dynamics to utilize the potential benefits of neuromorphic computing, Fugu is designed to provide a higher level abstraction as a hardware-independent mechanism for linking a variety of scalable spiking neural algorithms from a variety of sources. Individual kernels linked together provide sophisticated processing through compositionality. Fugu is intended to be suitable for a wide-range of neuromorphic applications, including machine learning, scientific computing, and more brain-inspired neural algorithms. Ultimately, we hope the community adopts this and other open standardization attempts allowing for free exchange and easy implementations of the ever-growing list of spiking neural algorithms.

More Details

Benchmarking event-driven neuromorphic architectures

ACM International Conference Proceeding Series

Vineyard, Craig M.; Green, Sam; Severa, William M.; Koc, Cetin K.

Neuromorphic architectures are represented by a broad class of hardware, with artificial neural network (ANN) architectures at one extreme and event-driven spiking architectures at another. Algorithms and applications efficiently processed by one neuromorphic architecture may be unsuitable for another, but it is challenging to compare various neuromorphic architectures among themselves and with traditional computer architectures. In this position paper, we take inspiration from architectural characterizations in scientific computing and motivate the need for neuromorphic architecture comparison techniques, outline relevant performance metrics and analysis tools, and describe cognitive workloads to meaningfully exercise neuromorphic architectures. Additionally, we propose a simulation-based framework for benchmarking a wide range of neuromorphic workloads. While this work is applicable to neuromorphic development in general, we focus on event-driven architectures, as they offer both unique performance characteristics and evaluation challenges.

More Details

The insect brain as a model system for low power electronics and edge processing applications

Proceedings - 2019 IEEE Space Computing Conference, SCC 2019

Yanguas-Gil, Angel; Mane, Anil; Elam, Jeffrey W.; Wang, Felix W.; Severa, William M.; Daram, Anurag R.; Kudithipudi, Dhireesha

The insect brain is a great model system for low power electronics: Insects carry out multisensory integration and are able to change the way the process information, learn, and adapt to changes in their environment with a very limited power budget. This context-dependent processing allows them to implement multiple functionalities within the same network, as well as to minimize power consumption by having context-dependent gains in their first layers of input processing. The combination of low power consumption, adaptability and online learning, and robustness makes them particularly appealing for a number of space applications, from rovers and probes to satellites, all having to deal with the progressive degradation of their capabilities in remote environments. In this work, we explore architectures inspired in the insect brain capable of context-dependent processing and learning. Starting from algorithms, we have explored three different implementations: A spiking implementation in a neuromorphic chip, a custom implementation in an FPGA, and finally hybrid analog/digital implementations based on cross-bar arrays. For the latter, we found that the development of novel resistive materials is crucial in order to enhance the energy efficiency of analog devices while maintaining an adequate footprint. Metal-oxide nanocomposite materials, fabricated using ALD with processes compatible with semiconductor processing, are promising candidates to fill in that role.

More Details

A resurgence in neuromorphic architectures enabling remote sensing computation

Proceedings - 2019 IEEE Space Computing Conference, SCC 2019

Vineyard, Craig M.; Severa, William M.; Kagie, Matthew J.; Scholand, Andrew J.; Hays, Park E.

Technological advances have enabled exponential growth in both sensor data collection, as well as computational processing. However, as a limiting factor, the transmission bandwidth in between a space-based sensor and a ground station processing center has not seen the same growth. A resolution to this bandwidth limitation is to move the processing to the sensor, but doing so faces size, weight, and power operational constraints. Different physical constraints on processor manufacturing are spurring a resurgence in neuromorphic approaches amenable to the space-based operational environment. Here we describe historical trends in computer architecture and the implications for neuromorphic computing, as well as give an overview of how remote sensing applications may be impacted by this emerging direction for computing.

More Details

Acquisition and representation of spatio-temporal signals in polychronizing spiking neural networks

ACM International Conference Proceeding Series

Wang, Felix W.; Severa, William M.; Rothganger, Fredrick R.

The ability of an intelligent agent to process complex signals such as those found in audio or video depends heavily on the nature of the internal representation of the relevant information. This work explores the mechanisms underlying this process by investigating theories inspired by the function of the neocortex. In particular, we focus on the phenomenon of polychronization, which describes the self-organization in a spiking neural network resulting from the interplay between network structure, driven spiking activity, and synaptic plasticity. What emerges are groups of neurons that exhibit reproducible, time-locked patterns of spiking activity. We propose that this representation is well suited to spatio-temporal signal processing, as it naturally resembles patterns found in real-world signals. We explore the computational properties of this approach and demonstrate the ability of a simple polychronizing network to learn different spatio-temporal signals.

More Details

Making bread: Biomimetic strategies for artificial intelligence now and in the future

Frontiers in Neuroscience

Krichmar, Jeffrey L.; Severa, William M.; Khan, Muhammad S.; Olds, James L.

The Artificial Intelligence (AI) revolution foretold of during the 1960s is well underway in the second decade of the twenty first century. Its period of phenomenal growth likely lies ahead. AI-operated machines and technologies will extend the reach of Homo sapiens far beyond the biological constraints imposed by evolution: outwards further into deep space, as well as inwards into the nano-world of DNA sequences and relevant medical applications. And yet, we believe, there are crucial lessons that biology can offer that will enable a prosperous future for AI. For machines in general, and for AI's especially, operating over extended periods or in extreme environments will require energy usage orders of magnitudes more efficient than exists today. In many operational environments, energy sources will be constrained. The AI's design and function may be dependent upon the type of energy source, as well as its availability and accessibility. Any plans for AI devices operating in a challenging environment must begin with the question of how they are powered, where fuel is located, how energy is stored and made available to the machine, and how long the machine can operate on specific energy units. While one of the key advantages of AI use is to reduce the dimensionality of a complex problem, the fact remains that some energy is required for functionality. Hence, the materials and technologies that provide the needed energy represent a critical challenge toward future use scenarios of AI and should be integrated into their design. Here we look to the brain and other aspects of biology as inspiration for Biomimetic Research for Energy-efficient AI Designs (BREAD).

More Details

Exploring Applications of Random Walks on Spiking Neural Algorithms

Reeder, Leah; Hill, Aaron; Aimone, James B.; Severa, William M.

Neuromorphic computing has many promises in the future of computing due to its energy efficient and scalable implementation. Here we extend a neural algorithm that is able to solve the diffusion equation PDE by implementing random walks on neuromorphic hardware. Additionally, we introduce four random walk applications that use this spiking neural algorithm. The four applications currently implemented are: generating a random walk to replicate an image, finding a path between two nodes, finding triangles in a graph, and partitioning a graph into two sections. We then made these four applications available to be implemented on software using a graphical user interface (GUI).

More Details

Neural Algorithms for Low Power Implementation of Partial Differential Equations

Aimone, James B.; Hill, Aaron; Lehoucq, Rich; Parekh, Ojas D.; Reeder, Leah; Severa, William M.

The rise of low-power neuromorphic hardware has the potential to change high-performance computing; however much of the focus on brain-inspired hardware has been on machine learning applications. A low-power solution for solving partial differential equations could radically change how we approach large-scale computing in the future. The random walk is a fundamental stochastic process that underlies many numerical tasks in scientific computing applications. We consider here two neural algorithms that can be used to efficiently implement random walks on spiking neuromorphic hardware. The first method tracks the positions of individual walkers independently by using a modular code inspired by grid cells in the brain. The second method tracks the densities of random walkers at each spatial location directly. We present the scaling complexity of each of these methods and illustrate their ability to model random walkers under different probabilistic conditions. Finally, we present implementations of these algorithms on neuromorphic hardware.

More Details

Neural Networks as Surrogates of Nonlinear High-Dimensional Parameter-to-Prediction Maps

Jakeman, John D.; Perego, Mauro; Severa, William M.

We present a preliminary investigation of the use of Multi-Layer Perceptrons (MLP) and Recurrent Neural Networks (RNNs) as surrogates of parameter-to-prediction maps of computational expensive dynamical models. In particular, we target the approximation of Quantities of Interest (QoIs) derived from the solution of a Partial Differential Equations (PDEs) at different time instants. In order to limit the scope of our study while targeting a relevant application, we focus on the problem of computing variations in the ice sheets mass (our QoI), which is a proxy for global mean sea-level changes. We present a number of neural network formulations and compare their performance with that of Polynomial Chaos Expansions (PCE) constructed on the same data.

More Details

A spike-Timing neuromorphic architecture

2017 IEEE International Conference on Rebooting Computing, ICRC 2017 - Proceedings

Hill, Aaron; Donaldson, Jonathon W.; Rothganger, Fredrick R.; Vineyard, Craig M.; Follett, David R.; Follett, Pamela L.; Smith, Michael R.; Verzi, Stephen J.; Severa, William M.; Wang, Felix W.; Aimone, James B.; Naegle, John H.; James, Conrad D.

Unlike general purpose computer architectures that are comprised of complex processor cores and sequential computation, the brain is innately parallel and contains highly complex connections between computational units (neurons). Key to the architecture of the brain is a functionality enabled by the combined effect of spiking communication and sparse connectivity with unique variable efficacies and temporal latencies. Utilizing these neuroscience principles, we have developed the Spiking Temporal Processing Unit (STPU) architecture which is well-suited for areas such as pattern recognition and natural language processing. In this paper, we formally describe the STPU, implement the STPU on a field programmable gate array, and show measured performance data.

More Details

Neurogenesis deep learning: Extending deep networks to accommodate new classes

Proceedings of the International Joint Conference on Neural Networks

Draelos, Timothy J.; Miner, Nadine E.; Lamb, Christopher; Cox, Jonathan A.; Vineyard, Craig M.; Carlson, Kristofor D.; Severa, William M.; James, Conrad D.; Aimone, James B.

Neural machine learning methods, such as deep neural networks (DNN), have achieved remarkable success in a number of complex data processing tasks. These methods have arguably had their strongest impact on tasks such as image and audio processing - data processing domains in which humans have long held clear advantages over conventional algorithms. In contrast to biological neural systems, which are capable of learning continuously, deep artificial networks have a limited ability for incorporating new information in an already trained network. As a result, methods for continuous learning are potentially highly impactful in enabling the application of deep networks to dynamic data sets. Here, inspired by the process of adult neurogenesis in the hippocampus, we explore the potential for adding new neurons to deep layers of artificial neural networks in order to facilitate their acquisition of novel information while preserving previously trained data representations. Our results on the MNIST handwritten digit dataset and the NIST SD 19 dataset, which includes lower and upper case letters and digits, demonstrate that neurogenesis is well suited for addressing the stability-plasticity dilemma that has long challenged adaptive machine learning algorithms.

More Details

A combinatorial model for dentate gyrus sparse coding

Neural Computation

Severa, William M.; Parekh, Ojas D.; James, Conrad D.; Aimone, James B.

The dentate gyrus forms a critical link between the entorhinal cortex and CA3 by providing a sparse version of the signal. Concurrent with this increase in sparsity, a widely accepted theory suggests the dentate gyrus performs pattern separation-similar inputs yield decorrelated outputs. Although an active region of study and theory, few logically rigorous arguments detail the dentate gyrus's (DG) coding.We suggest a theoretically tractable, combinatorial model for this action. The model provides formal methods for a highly redundant, arbitrarily sparse, and decorrelated output signal. To explore the value of this model framework, we assess how suitable it is for two notable aspects of DG coding: how it can handle the highly structured grid cell representation in the input entorhinal cortex region and the presence of adult neurogenesis, which has been proposed to produce a heterogeneous code in the DG.We find tailoring themodel to grid cell input yields expansion parameters consistent with the literature. In addition, the heterogeneous coding reflects activity gradation observed experimentally. Finally,we connect this approach with more conventional binary threshold neural circuit models via a formal embedding.

More Details
Results 51–100 of 111
Results 51–100 of 111