Publications

Results 51–75 of 203

Search results

Jump to search filters

Dynamic compressive strength of rock salts

International Journal of Rock Mechanics and Mining Sciences

Bauer, Stephen J.; Song, Bo S.; Sanborn, Brett S.

Mining rock salt results in subsurface damage, which may affect the strength because of applied stress, anisotropy, and deformation rate. In this study, we used a Kolsky compression bar to measure the high strain rate response of bedded and domal salt at strain rates up to approximately 50 s−1 in parallel and perpendicular directions to bedding or foliation direction depending on rock salt type. Both types of salt exhibited a negative strain rate effect wherein a decrease in strength was observed with increasing strain rate compared to strength measured in the quasi-static regime. Both materials exhibited strength anisotropy. Fracturing and microfracturing were the dominant deformation mechanisms. High pore pressures and frictional heating due to the high loading rate may have contributed to reduction in strength.

More Details

Noble gas release from bedded rock salt during deformation

Geofluids

Bauer, Stephen J.; Gardner, W.P.; Lee, Hyunwoo

Geogenic noble gases are contained in crustal rocks at inter- and intracrystalline sites. In this study, bedded rock salt from southern New Mexico was deformed in a variety of triaxial compression states while measuring the release of naturally contained helium and argon utilizing mass spectrometry. Noble gas release is empirically correlated to volumetric strain and acoustic emissions. At low confining pressures, rock salt deforms primarily by microfracturing, rupturing crystal grains, and releasing helium and argon with a large amount of acoustic emissions, both measured real-time. At higher confining pressure, microfracturing is reduced and the rock salt is presumed to deform more by intracrystalline flow, releasing less amounts of noble gases with fewer acoustic emissions. Our work implies that geogenic gas release during deformation may provide an additional signal which contains information on the type and amount of deformation occurring in a variety of earth systems.

More Details

Micromechanical processes in consolidated granular salt

Engineering Geology

Mills, Melissa M.; Stormont, John C.; Bauer, Stephen J.

Granular salt is likely to be used as backfill material and a seal system component within geologic salt formations serving as a repository for long-term isolation of nuclear waste. Pressure from closure of the surrounding salt formation will promote consolidation of granular salt, eventually resulting in properties comparable to native salt. Understanding dependence of consolidation processes on stress state, moisture availability, temperature, and time is important for demonstrating sealing functions and long-term repository performance. This study characterizes laboratory-consolidated granular salt by means of microstructural observations. Granular salt material from mining operations was obtained from the bedded Salado Formation hosting the Waste Isolation Pilot Plant and the Avery Island salt dome. Laboratory test conditions included hydrostatic consolidation of jacketed granular salt with varying conditions of confining isochoric stress to 38 MPa, temperature to 250 °C, moisture additions of 1% by weight, time duration, and vented and non-vented states. Resultant porosities ranged between 1% and 22%. Optical and scanning electron microscopic techniques were used to ascertain consolidation mechanisms. From these investigations, samples with 1% added moisture or unvented during consolidation, exhibit clear pressure solution processes with tightly cohered grain boundaries and occluded fluid pores. Samples with only natural moisture content consolidated by a combination of brittle, cataclastic, and crystal plastic deformation. Recrystallization at 250 °C irrespective of moisture conditions was also observed. The range and variability of conditions applied in this study, combined with the techniques used to display microstructural features, are unique, and provide insight into an important area of governing deformation mechanism(s) occurring within salt repository applications.

More Details

Observation of the Kaiser Effect Using Noble Gas Release Signals

Rock Mechanics and Rock Engineering

Bauer, Stephen J.

The Kaiser effect is a stress memory phenomenon which has most often been demonstrated in rock using acoustic emissions. During cyclic loading–unloading–reloading, the acoustic emissions are near zero until the load exceeds the level of the previous load cycle. Researchers explore the Kaiser effect in rock using real-time noble gas release. Laboratory studies using real-time mass spectrometry measurements during deformation have quantified, to a degree, the types of gases released, degree, the types of gases released (Bauer et al. 2016a, b), their release rates and amounts during deformation, estimates of permeability created from pore structure modifications during deformation and the impact of mineral plasticity upon gas release. Its observed that noble gases contained in brittle crystalline rock are readily released during deformation.

More Details

Simulations of the effects of proppant placement on the conductivity and mechanical stability of hydraulic fractures

International Journal of Rock Mechanics and Mining Sciences

Bolintineanu, Dan S.; Rao, Rekha R.; Lechman, Jeremy B.; Romero, Joseph A.; Jove Colon, Carlos F.; Quintana, Enrico C.; Bauer, Stephen J.; Ingraham, Mathew D.

We generate a wide range of models of proppant-packed fractures using discrete element simulations, and measure fracture conductivity using finite element flow simulations. This allows for a controlled computational study of proppant structure and its relationship to fracture conductivity and stress in the proppant pack. For homogeneous multi-layered packings, we observe the expected increase in fracture conductivity with increasing fracture aperture, while the stress on the proppant pack remains nearly constant. This is consistent with the expected behavior in conventional proppant-packed fractures, but the present work offers a novel quantitative analysis with an explicit geometric representation of the proppant particles. In single-layered packings (i.e. proppant monolayers), there is a drastic increase in fracture conductivity as the proppant volume fraction decreases and open flow channels form. However, this also corresponds to a sharp increase in the mechanical stress on the proppant pack, as measured by the maximum normal stress relative to the side crushing strength of typical proppant particles. We also generate a variety of computational geometries that resemble highly heterogeneous proppant packings hypothesized to form during channel fracturing. In some cases, these heterogeneous packings show drastic improvements in conductivity with only moderate increase in the stress on the proppant particles, suggesting that in certain applications these structures are indeed optimal. We also compare our computer-generated structures to micro computed tomography imaging of a manually fractured laboratory-scale shale specimen, and find reasonable agreement in the geometric characteristics.

More Details

Modeling Dynamic Helium Release as a Tracer of Rock Deformation

Journal of Geophysical Research: Solid Earth

Bauer, Stephen J.; Gardner, W.P.; Kuhlman, Kristopher L.; Heath, Jason

We use helium released during mechanical deformation of shales as a signal to explore the effects of deformation and failure on material transport properties. A dynamic dual-permeability model with evolving pore and fracture networks is used to simulate gases released from shale during deformation and failure. Changes in material properties required to reproduce experimentally observed gas signals are explored. We model two different experiments of 4He flow rate measured from shale undergoing mechanical deformation, a core parallel to bedding and a core perpendicular to bedding. We find that the helium signal is sensitive to fracture development and evolution as well as changes in the matrix transport properties. We constrain the timing and effective fracture aperture, as well as the increase in matrix porosity and permeability. Increases in matrix permeability are required to explain gas flow prior to macroscopic failure, and the short-term gas flow postfailure. Increased matrix porosity is required to match the long-term, postfailure gas flow. Our model provides the first quantitative interpretation of helium release as a result of mechanical deformation. The sensitivity of this model to changes in the fracture network, as well as to matrix properties during deformation, indicates that helium release can be used as a quantitative tool to evaluate the state of stress and strain in earth materials.

More Details

2017 GTO Project review Laboratory Evaluation of EGS Shear Stimulation

Bauer, Stephen J.

The objectives and purpose of this research has been to produce laboratory-based experimental and numerical analyses to provide a physics-based understanding of shear stimulation phenomena (hydroshearing) and its evolution during stimulation. Water was flowed along fractures in hot and stressed fractured rock, to promote slip. The controlled laboratory experiments provide a high resolution/high quality data resource for evaluation of analysis methods developed by DOE to assess EGS “behavior” during this stimulation process. Segments of the experimental program will provide data sets for model input parameters, i.e., material properties, and other segments of the experimental program will represent small scale physical models of an EGS system, which may be modeled. The coupled lab/analysis project has been a study of the response of a fracture in hot, water-saturated fractured rock to shear stress experiencing fluid flow. Under this condition, the fracture experiences a combination of potential pore pressure changes and fracture surface cooling, resulting in slip along the fracture. The laboratory work provides a means to assess the role of “hydroshearing” on permeability enhancement in reservoir stimulation. Using the laboratory experiments and results to define boundary and input/output conditions of pore pressure, thermal stress, fracture shear deformation and fluid flow, and models were developed and simulations completed by the University of Oklahoma team. The analysis methods are ones used on field scale problems. The sophisticated numerical models developed contain parameters present in the field. The analysis results provide insight into the role of fracture slip on permeability enhancement-“hydroshear” is to be obtained. The work will provide valuable input data to evaluate stimulation models, thus helping design effective EGS.

More Details

Real Time Degassing of Rock during Deformation

Bauer, Stephen J.; Gardner, Payton; Lee, Hyunwoo

An experimental system we developed combines triaxial rock deformation and mass spectrometry to measure noble gas flow before, during, and after rock fracture. Geogenic noble gas is released during triaxial deformation (real time) and is related to volume strain and acoustic emissions. The noble gas release then represents a signal of deformation during its stages of development. Noble gases are contained in most crustal rock at inter and intra granular sites. Their release during natural and man-made stress and strain changes represents a signal of deformation in brittle and semi-brittle conditions. The noble gas composition depends on lithology, geologic history, age of the rock, and fluids present. Uranium, thorium and potassium-40 concentrations in the rocks also affect the production of radiogenic noble gases (4He, Ar). Noble gas emission and its relationship to crustal processes have been studied for many years in the geologic community including correlations to tectonic velocities and qualitative estimates of deep permeability from surface measurements, finger prints of nuclear weapon detonation, and as a potential precursory signal to earthquakes attributed to gas release due to pre-seismic stress, dilatancy and/or fracturing of the rock. Helium emission has been shown as a precursor of volcanic activity. We present empirical results/relationships of specimen strain, microstructural evolution, acoustic emissions, and noble gas release from laboratory triaxial experiments performed upon a granite and a young basalt, bedded salt, and a marine shale.

More Details

Gas Release as a Deformation Signal

Bauer, Stephen J.

Radiogenic noble gases are contained in crustal rock at inter and intra granular sites. The gas composition depends on lithology, geologic history, fluid phases, and the aging effect by decay of U, Th, and K. The isotopic signature of noble gases found in rocks is vastly different than that of the atmosphere which is contributed by a variety of sources. When rock is subjected to stress conditions exceeding about half its yield strength, micro-cracks begin to form. As rock deformation progresses a fracture network evolves, releasing trapped noble gases and changing the transport properties to gas migration. Thus, changes in gas emanation and noble gas composition from rocks could be used to infer changes in stress-state and deformation. The purpose of this study has been to evaluate the effect of deformation/strain rate upon noble gas release. Four triaxial experiments were attempted for a strain rate range of %7E10-8 /s (180,000s) to %7E 10-4/s (500s); the three fully successful experiments (at the faster strain rates) imply the following: (1) helium is measurably released for all strain rates during deformation, this release is in amounts 1-2 orders of magnitude greater than that present in the air, and (2) helium gas release increases with decreasing strain rate.

More Details

Evolution of permeability and Biot coefficient at high mean stresses in high porosity sandstone

International Journal of Rock Mechanics and Mining Sciences

Ingraham, Mathew D.; Bauer, Stephen J.; Issen, Kathleen A.; Dewers, Thomas D.

A series of constant mean stress (CMS) and constant shear stress (CSS) tests were performed to investigate the evolution of permeability and Biot coefficient at high mean stresses in a high porosity reservoir analog (Castlegate sandstone). Permeability decreases as expected with increasing mean stress, from about 20 Darcy at the beginning of the tests to between 1.5 and 0.3 Darcy at the end of the tests (mean stresses up to 275 MPa). The application of shear stress causes permeability to drop below that of a hydrostatic test at the same mean stress. Results show a nearly constant rate decrease in the Biot coefficient as the mean stress increases during hydrostatic loading, and as the shear stress increases during CMS loading. CSS tests show a stabilization of the Biot coefficient after the application of shear stress.

More Details
Results 51–75 of 203
Results 51–75 of 203