Publications

Results 1–25 of 95

Search results

Jump to search filters

Mojave firmware 1.09 FW valuation- Firmware 1.09 Results

Gonzalez, Sigifredo G.; Gurule, Nicholas S.

This quick note outlines what we found after our conversion with you and your team. As suggested, we loaded 1547-2003 source requirements document (SRD) and then went back and loaded 1547-2018 SRD. This did result in implementing the new 1547-2018 settings. This short report focuses on the frequency-watt function and shows a couple of screen shots of the parameter settings via the Mojave HMI interface and plots of the results of the inverter with FW function enabled in both default and most aggressive settings response to frequency events. The first screen shot shows the 1547-2018 selected after selecting 1547-2003.

More Details

Mojave firmware 1.09 base-line valuation [Memo]

Gonzalez, Sigifredo G.

The inverter firmware was upgraded to version 1.09 and an initial assessment was conducted on the inverter using the equipment listed above and the response of the inverter can be seen in the following plots. This work is to base-line the response of the inverter to utility conditions and commands and further work will involve the interoperability aspect of the inverter using SunSpec dashboard to conduct the tests and configure the inverter.

More Details

Performance of a Grid-Forming Inverter under Balanced and Unbalanced Voltage Phase Angle Jump Conditions

Conference Record of the IEEE Photovoltaic Specialists Conference

Darbali-Zamora, Rachid; Gurule, Nicholas S.; Hernandez Alvidrez, Javier H.; Gonzalez, Sigifredo G.; Reno, Matthew J.

Renewable energy has become a viable solution for reducing the harmful effects that fossil fuels have on our environment, prompting utilities to replace traditional synchronous generators (SG) with more inverter-based devices that can provide clean energy. One of the biggest challenges utilities are facing is that by replacing SG, there is a reduction in the systems' mechanical inertia, making them vulnerable to frequency instability. Grid-forming inverters (GFMI) have the ability to create and regulate their own voltage reference in a manner that helps stabilize system frequency. As an emerging technology, there is a need for understanding their dynamic behavior when subjected to abrupt changes. This paper evaluates the performance of a GFMI when subjected to voltage phase jump conditions. Experimental results are presented for the GFMI subjected to both balanced and unbalanced voltage phase jump events in both P/Q and V/f modes.

More Details

RADIANCE Cybersecurity Plan: Generic Version

Mccarty, M.V.; Mix Sr.Mix; Knight, M.R.; Eddy, John P.; Johnson, Jay; Gonzalez, Sigifredo G.

Under its Grid Modernization Initiative, the U.S. Department of Energy (DOE), in collaboration with energy industry stakeholders developed a multi-year research plan to support modernizing the electric grid. One of the foundational projects for accelerating modernization efforts is information and communications technology interoperability. A key element of this project has been the development of a methodology for engaging ecosystems related to grid integration to create roadmaps that advance the ease of integration of related smart technology. This document is the product of activities undertaken in 2017 through 2019. It provides a Cybersecurity Plan describing the technology to be adopted in the project with details as per the GMLC Call document.

More Details

Grid-forming Inverter Experimental Testing of Fault Current Contributions

Conference Record of the IEEE Photovoltaic Specialists Conference

Gurule, Nicholas S.; Hernandez Alvidrez, Javier H.; Reno, Matthew J.; Summers, Adam; Gonzalez, Sigifredo G.; Flicker, Jack D.

Historically, photovoltaic inverters have been grid-following controlled, but with increasing penetrations of inverter-based generation on the grid, grid-forming inverters (GFMI) are gaining interest. GFMIs can also be used in microgrids that require the ability to interact and operate with the grid (grid-tied), or to operate autonomously (islanded) while supplying their corresponding loads. This approach can substantially improve the response of the grid to severe contingencies such as hurricanes, or to high load demands. During islanded conditions, GFMIs play an important role on dictating the system's voltage and frequency the same way as synchronous generators do in large interconnected systems. For this reason, it is important to understand the behavior of such grid-forming inverters under fault scenarios. This paper focuses on testing different commercially available grid-forming inverters under fault conditions.

More Details

Grid-forming Inverter Experimental Testing of Fault Current Contributions

Conference Record of the IEEE Photovoltaic Specialists Conference

Gurule, Nicholas S.; Hernandez Alvidrez, Javier H.; Reno, Matthew J.; Summers, Adam; Gonzalez, Sigifredo G.; Flicker, Jack D.

Historically, photovoltaic inverters have been grid-following controlled, but with increasing penetrations of inverter-based generation on the grid, grid-forming inverters (GFMI) are gaining interest. GFMIs can also be used in microgrids that require the ability to interact and operate with the grid (grid-tied), or to operate autonomously (islanded) while supplying their corresponding loads. This approach can substantially improve the response of the grid to severe contingencies such as hurricanes, or to high load demands. During islanded conditions, GFMIs play an important role on dictating the system's voltage and frequency the same way as synchronous generators do in large interconnected systems. For this reason, it is important to understand the behavior of such grid-forming inverters under fault scenarios. This paper focuses on testing different commercially available grid-forming inverters under fault conditions.

More Details

Implementation of a Grid Connected Battery-Inverter Fleet Model

Rosewater, David M.; Gonzalez, Sigifredo G.

Batteries are designed to store electrical energy. The increasing variation in time value of energy has driven the use of batteries as controllable distributed energy resources (DER). This is enabled though low-cost power electronic inverters that are able to precisely control charge and discharge. This paper describes the software implementation of an open-source battery inverter fleet models in python. The Sandia BatterylnverterFleet class model can be used by scientists, researchers, and engineers to perform simulations of one or more fleets of similar battery-inverter systems connected to the grid. The program tracks the state- of-charge of the simulated batteries and ensures that they stay within their limits while responding to separately generated service requests to charge or discharge. This can be used to analyze control and coordination, placement and sizing, and many other problems associated with the integration of batteries on the power grid. The development of these models along with their python implementation was funded by the Grid Modernization Laboratory Consortium (GMLC) project 1.4.2. Definitions, Standards and Test Procedures for Grid Services from Devices.

More Details

Unintentional Islanding Detection Performance with Mixed DER Types

Gonzalez, Sigifredo G.; Ellis, Abraham E.; Ropp, Michael E.; Mouw, Chris A.; Schutz, Dustin D.; Perlenfein, Scott J.

Most inverters for use in distribution-connected distributed energy resource applications (distributed generation and energy storage) are tested and certified to detect and cease to energize unintentional islands on the electric grid. The requirements for the performance of islanding detection methods are specified in IEEE 1547-2018, and specified conditions for certification- type testing of islanding detection are defined in IEEE 1547.1. Such certification-type testing is designed to ensure a minimum level of confidence that these inverters will not island in field applications. However, individual inverter certification tests do not address interactions between dissimilar inverters or between inverter and synchronous machines that may occur in the field. This work investigates the performance of different inverter island detection methods for these two circumstances that are not addressed by the type testing: 1) combinations of different inverters using different types of islanding detection methods, and 2) combinations of inverters and synchronous generators. The analysis took into consideration voltage and frequency ride- through requirements as specified in IEEE 1547-2018, but did not consider grid support functionality such as voltage or frequency response. While the risk of islanding is low even in these cases, it is often difficult to deal with these scenarios in a simplified interconnection screening process. This type of analysis could provide a basis to establish a practical anti- islanding screening methodology for these complex scenarios, with the goal of reducing the number of required detailed studies. Eight generic Groups of islanding detection behavior are defined, and examples of each are used in the simulations. The results indicate that islanding detection methods lose effectiveness at significantly different rates as the composition of the distributed energy resources (DERs) varies, with some methods remaining highly effective over a wide range of conditions.

More Details
Results 1–25 of 95
Results 1–25 of 95