Publications

Results 176–199 of 199

Search results

Jump to search filters

Realizing high-quality, ultralarge momentum states and ultrafast topological transitions using semiconductor hyperbolic metamaterials

Journal of the Optical Society of America B: Optical Physics

Campione, Salvatore; Liu, Sheng L.; Luk, Ting S.; Sinclair, Michael B.

We employ both the effective medium approximation (EMA) and Bloch theory to compare the dispersion properties of semiconductor hyperbolic metamaterials (SHMs) at mid-infrared frequencies and metallic hyperbolic metamaterials (MHMs) at visible frequencies. This analysis reveals the conditions under which the EMA can be safely applied for both MHMs and SHMs. We find that the combination of precise nanoscale layering and the longer infrared operating wavelengths puts the SHMs well within the effective medium limit and, in contrast to MHMs, allows for the attainment of very high photon momentum states. In addition, SHMs allow for new phenomena such as ultrafast creation of the hyperbolic manifold through optical pumping. In particular, we examine the possibility of achieving ultrafast topological transitions through optical pumping which can photo-dope appropriately designed quantum wells on the femtosecond time scale.

More Details

Optical properties of transiently-excited semiconductor hyperbolic metamaterials

Optical Materials Express

Campione, Salvatore; Luk, Ting S.; Liu, Sheng L.; Sinclair, Michael B.

Ultrafast optical excitation of photocarriers has the potential to transform undoped semiconductor superlattices into semiconductor hyperbolic metamaterials (SHMs). In this paper, we investigate the optical properties associated with such ultrafast topological transitions. We first show reflectance, transmittance, and absorption under TE and TM plane wave incidence. In the unpumped state, the superlattice exhibits a frequency region with high reflectance (>80%) and a region with low reflectance (<1%) for both TE and TM polarizations over a wide range of incidence angles. In contrast, in the photopumped state, the reflectance for both frequencies and polarizations is very low (<1%) for a similar range of angles. Interestingly, this system can function as an all-optical reflection switch on ultrafast timescales. Furthermore, for TM incidence and close to the epsilon-near-zero point of the longitudinal permittivity, directional perfect absorption on ultrafast timescales may also be achieved. Finally, we discuss the onset of negative refraction in the photopumped state.

More Details

Optical Strong Coupling between near-Infrared Metamaterials and Intersubband Transitions in III-Nitride Heterostructures

ACS Photonics

Benz, Alexander; Campione, Salvatore; Moseley, Michael; Wierer, Jonathan W.; Allerman, A.A.; Wendt, J.R.; Brener, Igal B.

(Figure Presented) We present the design, realization, and characterization of optical strong light-matter coupling between intersubband transitions within a semiconductor heterostructures and planar metamaterials in the near-infrared spectral range. The strong light-matter coupling entity consists of a III-nitride intersubband superlattice heterostructure, providing a two-level system with a transition energy of ∼0.8 eV (λ ∼1.55 μm) and a planar "dogbone" metamaterial structure. As the bare metamaterial resonance frequency is varied across the intersubband resonance, a clear anticrossing behavior is observed in the frequency domain. This strongly coupled entity could enable the realization of electrically tunable optical filters, a new class of efficient nonlinear optical materials, or intersubband-based light-emitting diodes.

More Details

Surface plasmon polariton enhanced ultrathin nano-structured CdTe solar cell

Optics Express

Cruz-Campa, Jose L.; Frank, Ian W.; Campione, Salvatore; Fofang, Nche T.

We demonstrate numerically that two-dimensional arrays of ultrathin CdTe nano-cylinders on Ag can serve as an effective broadband anti-reflection structure for solar cell applications. Such devices exhibit strong absorption properties, mainly in the CdTe semiconductor regions, and can produce short-circuit current densities of 23.4 mA/cm2, a remarkable number in the context of solar cells given the ultrathin dimensions of our nano-cylinders. The strong absorption is enabled via excitation of surface plasmon polaritons (SPPs) under plane wave incidence. In particular, we identified the key absorption mechanism as enhanced fields of the SPP standing waves residing at the interface of CdTe nano-cylinders and Ag. We compare the performance of Ag, Au, and Al substrates, and observe significant improvement when using Ag, highlighting the importance of using low-loss metals. Although we use CdTe here, the proposed approach is applicable to other solar cell materials with similar absorption properties. © 2014 Optical Society of America.

More Details

Gallium nitride nanowire distributed feedback lasers

Conference on Lasers and Electro-Optics Europe - Technical Digest

Wright, Jeremy B.; Campione, Salvatore; Liu, Sheng L.; Martinez, Julio A.; Xu, Huiwen; Luk, Ting S.; Li, Qiming; Wang, George T.; Swartzentruber, Brian S.; Brener, Igal B.

We have demonstrated single-mode lasing in a single gallium nitride nanowire using distributed feedback by external coupling to a dielectric grating. By adjusting the nanowire grating alignment we achieved a mode suppression ratio of 17dB.

More Details
Results 176–199 of 199
Results 176–199 of 199