Publications

Results 51–100 of 211

Search results

Jump to search filters

UCPD model for Pb-free solder

Journal of Electronic Packaging, Transactions of the ASME

Neilsen, Michael K.; Vianco, Paul T.

A unified creep plasticity damage (UCPD) model for eutectic Sn-Pb and Pb-free solders was developed and implemented into finite element analysis codes. The new model will be described along with the relationship between the model's damage evolution equation and an empirical Coffin-Manson relationship for solder fatigue. Next, developments needed to model crack initiation and growth in solder joints will be described. Finally, experimentally observed cracks in typical solder joints subjected to thermal mechanical fatigue are compared with model predictions. Finite element based modeling is particularly suited for predicting solder joint fatigue of advanced electronics packaging, e.g. package-on-package (PoP), because it allows for evaluation of a variety of package materials and geometries.

More Details

Laser ablation of thin films on LTCC

Proceedings - 2014 47th International Symposium on Microelectronics, IMAPS 2014

Girardi, M.A.; Peterson, Kenneth A.; Vianco, Paul T.; Grondin, R.; Wieliczka, D.

Direct Digital Manufacturing techniques such as laser ablation are proposed for the fabrication of lower cost, miniaturized, and lightweight integrated assemblies with high performance requirements. This paper investigates the laser ablation of a Ti/Cu/Pt/Au thin film metal stack on fired low temperature cofired ceramic (LTCC) surfaces using a 355 nm Nd.YAG diode pumped laser ablation system. It further investigates laser ablation applications using unfil ed, or 'green', LTCC materials: (1) through one layer of a laminated stack of unfiled LTCC tape to a buried thick film conductor ground plane, and (2) in unfiled Au thick films. The UV laser power profile and part fixturing were optimized to address defects such as LTCC microcracking, thin film adhesion failures, and redeposition of Cu and Pt. An alternate design approach to minimize ablation time was tested for efficiency in manufacture. Multichip Modules (MCM) were tested for solder ability', solder leach resistance, and wire bondabilify. Scanning election microscopy (SEM) as well as cross sections and microanalytical techniques were used in this study.

More Details

Unified creep plasticity damage (UCPD) model for SAC396 solder

ASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, InterPACK 2013

Neilsen, Michael K.; Vianco, Paul T.

A unified creep plasticity damage (UCPD) model for Sn-Pb and Pb-free solders was developed and implemented into finite element analysis codes. The new model will be described along with the relationship between the model's damage evolution equation and an empirical Coffin-Manson relationship for solder fatigue. Next, developments needed to model crack initiation and growth in solder joints will be described. Finally, experimentally observed cracks in typical solder joints subjected to thermal mechanical fatigue are compared with model predictions. Finite element based modeling is particularly suited for predicting solder joint fatigue of advanced electronics packaging, e.g. package-on-package (PoP), because it allows for evaluation of a variety of package materials and geometries. Copyright © 2013 by ASME.

More Details

Accelerated aging of Sn-Pb and Pb-free solder joints on hybrid microcircuit assemblies

IBSC 2012 - Proceedings of the 5th International Brazing and Soldering Conference

Vianco, Paul T.; Kilgo, Alice C.; Wroblewski, Brian W.; Zender, Gary L.; Guerrero, E.

The development of Pb-free solutions for the highreliability electronics community necessitates the consideration of hybrid microcircuit (HMC) products. This study used a test vehicle that included both plastic and ceramic packages as well as leaded and area-array solder joints on an alumina substrate. The conductor was a Ag-Pd thick film layer. The shear strength was measured for interconnections made with 63Sn-37Pb (wt.%, abbreviated Sn-Pb) and 95.5Sn-3.0Ag-0.5Cu (Sn-Ag-Cu) solders as a function of isothermal aging, thermal cycling, and thermal shock environments. The area-array packages indicated that solder joint fatigue was not altered significantly in a forward compatibility situation (i.e., Sn-Pb balls and a Sn-Ag-Cu assembly process). Local CTE mismatch fatigue strains are important for solder joints connecting ceramic area array packages to ceramic substrates. The gull-wing lead, SOT plastic package solder joints assembled with the Sn-Ag-Cu solder exhibit a greater strength loss under temperature cycling than did the corresponding Sn-Pb interconnections. Thermal shock is more detrimental to Sn-Pb HMC solder joints than are the equivalent number of thermal cycles. Copyright 2012 ASM International® All rights reserved.

More Details

Harsh environments electronics : downhole applications

Vianco, Paul T.

The development and operational sustainment of renewable (geothermal) and non-renewable (fossil fuel) energy resources will be accompanied by increasingly higher costs factors: exploration and site preparation, operational maintenance and repair. Increased government oversight in the wake of the Gulf oil spill will only add to the cost burden. It is important to understand that downhole conditions are not just about elevated temperatures. It is often construed that military electronics are exposed to the upper limit in terms of extreme service environments. Probably the harshest of all service conditions for electronics and electrical equipment are those in oil, gas, and geothermal wells. From the technology perspective, advanced materials, sensors, and microelectronics devices are benefificial to the exploration and sustainment of energy resources, especially in terms of lower costs. Besides the need for the science that creates these breakthroughs - there is also a need for sustained engineering development and testing. Downhole oil, gas, and geothermal well applications can have a wide range of environments and reliability requirements: Temperature, Pressure, Vibration, Corrosion, and Service duration. All too frequently, these conditions are not well-defifined because the application is labeled as 'high temperature'. This ambiguity is problematic when the investigation turns to new approaches for electronic packaging solutions. The objective is to develop harsh environment, electronic packaging that meets customer requirements of cost, performance, and reliability. There are a number of challenges: (1) Materials sets - solder alloys, substrate materials; (2) Manufacturing process - low to middle volumes, low defect counts, new equipment technologies; and (3) Reliability testing - requirements documents, test methods and modeling, relevant standards documents. The cost to develop and sustain renewable and non-renewable energy resources will continue to escalate within the industry. Downhole electronics can provide a very cost-effective approach for well exploration and sustainment (data logging). However, the harsh environments are a 'game-changer' in terms defining materials, assembly processes and the long-term reliability of downhole electronic systems. The system-level approach will enable the integration of each of these contributors - materials, processes, and reliability - in order to deliver cost-effective electronics that meet customer requirements.

More Details
Results 51–100 of 211
Results 51–100 of 211