Publications

Results 51–55 of 55

Search results

Jump to search filters

Temporal evolution of surface ripples on a finite plasma slab subject to the magneto-Rayleigh-Taylor instability

Physics of Plasmas

Weis, Matthew R.; Zhang, Peng; Lau, Yue Y.; Rittersdorf, Ian; Zier, Jacob; Gilgenbach, Ronald; Hess, Mark H.; Peterson, K.J.

Using the ideal magnetohydrodynamic model, we calculate the temporal evolution of initial ripples on the boundaries of a planar plasma slab that is subjected to the magneto-Rayleigh-Taylor instability. The plasma slab consists of three regions. We assume that in each region the plasma density is constant with an arbitrary value and the magnetic field is also constant with an arbitrary magnitude and an arbitrary direction parallel to the interfaces. Then, the instability may be driven by a combination of magnetic pressure and kinetic pressure. Thus the general dispersion relation is derived, together with the feedthrough factor between the two interfaces. The temporal evolution is constructed from the superposition of the eigenmodes. Those previously established results are recovered in the various limits. Numerical examples are given on the temporal evolution of ripples on the interfaces of the finite plasma slab.

More Details

Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion

Physical Review Letters

Gomez, Matthew R.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias; Rovang, Dean C.; Chandler, Gordon A.; Cuneo, Michael E.; Harvey-Thompson, Adam J.; Herrmann, Mark H.; Hess, Mark H.; Slutz, Stephen A.; Johns, Owen; Lamppa, Derek C.; Martin, Matthew R.; Mcbride, Ryan; Peterson, K.J.; Robertson, G.K.; Rochau, G.A.; Ruiz, Carlos L.; Savage, Mark E.; Sefkow, Adam B.; Smith, Ian C.; Stygar, William A.; Vesey, Roger A.; Sinars, Daniel; Hahn, Kelly; Hansen, Stephanie B.; Harding, Eric H.; Knapp, P.F.; Schmit, Paul

This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed axial magnetic field of 10 T is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA current with 100 ns rise time on the Z facility. Despite a predicted peak implosion velocity of only 70 km/s, the fuel reaches a stagnation temperature of approximately 3 keV, with Te ≈ Ti, and produces up to 2e12 thermonuclear DD neutrons. In this study, X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 μm over a 6 mm height and lasting approximately 2 ns. The number of secondary deuterium-tritium neutrons observed was greater than 1010, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg/cm2.

More Details
Results 51–55 of 55
Results 51–55 of 55