Novel intraday photovoltaic production forecasting algorithm using deep learning ensemble models
Abstract not provided.
Abstract not provided.
Abstract not provided.
Conference Record of the IEEE Photovoltaic Specialists Conference
Corrective maintenance strategies are important for safeguarding optimum photovoltaic (PV) performance while also minimizing downtimes due to failures. In this work, a complete operation and maintenance (OM) decision support system (DSS) was developed for corrective maintenance. The DSS operates entirely on field measurements and incorporates technical asset and financial management features. It was validated experimentally on a large-scale PV system installed in Greece and the results demonstrated the financial benefits of performing corrective actions in case of failures and reversible loss mechanisms. Reduced response and resolution times of corrective actions could improve the PV power production of the test PV plant by up to 2.41%. Even for 1% energy yield improvement by performing corrective actions, a DSS is recommended for large-scale PV plants (with a peak capacity of at least 250 kWp).
Progress in Photovoltaics: Research and Applications
The IEA PVPS Task 13 group, experts who focus on photovoltaic performance, operation, and reliability from several leading R&D centers, universities, and industrial companies, is developing a framework for the calculation of performance loss rates of a large number of commercial and research photovoltaic (PV) power plants and their related weather data coming across various climatic zones. The general steps to calculate the performance loss rate are (i) input data cleaning and grading; (ii) data filtering; (iii) performance metric selection, corrections, and aggregation; and finally, (iv) application of a statistical modeling method to determine the performance loss rate value. In this study, several high-quality power and irradiance datasets have been shared, and the participants of the study were asked to calculate the performance loss rate of each individual system using their preferred methodologies. The data are used for benchmarking activities and to define capabilities and uncertainties of all the various methods. The combination of data filtering, metrics (performance ratio or power based), and statistical modeling methods are benchmarked in terms of (i) their deviation from the average value and (ii) their uncertainty, standard error, and confidence intervals. It was observed that careful data filtering is an essential foundation for reliable performance loss rate calculations. Furthermore, the selection of the calculation steps filter/metric/statistical method is highly dependent on one another, and the steps should not be assessed individually.
IEEE Journal of Photovoltaics
The IEC 61853 photovoltaic (PV) module energy rating standard requires measuring module power (and hence, efficiency) over a matrix of irradiance and temperature conditions. These matrix points represent nearly the full range of operating conditions encountered in the field in all but the most extreme locations and create an opportunity to develop alternative approaches for calculating system performance. In this article, a new PV module efficiency model is presented and compared with five published models using matrix data collected from four different PV module types. The results of the comparative analysis demonstrated that the new model improves on the existing ones exhibiting root-mean-square errors in normalized efficiency well below 0.01 for all cases and PV modules. The analysis also highlighted its ability to interpolate and extrapolate performance between and beyond measured matrix points of irradiance and temperature, establishing it as a robust yet relatively simple model for several applications that are detailed throughout this article.
IEEE Journal of Photovoltaics
Photovoltaic (PV) soiling profiles exhibit a sawtooth shape, where cleaning events and soiling deposition periods alternate. Generally, the rate at which soiling accumulates is assumed to be constant within each deposition period. In reality, changes in rates can occur because of sudden variations in climatic conditions, e.g., dust storms or prolonged periods of rain. The existing models used to extract the soiling profile from the PV performance data might fail to capture the change points and occasionally estimate incorrect soiling profiles. This work analyzes how the introduction of change points can be beneficial for soiling extraction. Data from nine soiling stations and a 1-MW site were analyzed by using piecewise regression and three change point detection algorithms. The results showed that accounting for change points can provide significant benefits to the modeling of soiling even if not all the change point algorithms return the same improvements. Considering change points in historical trends is found to be particularly important for studies aiming to optimize cleaning schedules.
Energies
A main challenge for integrating the intermittent photovoltaic (PV) power generation remains the accuracy of day-ahead forecasts and the establishment of robust performing methods. The purpose of this work is to address these technological challenges by evaluating the day-ahead PV production forecasting performance of different machine learning models under different supervised learning regimes and minimal input features. Specifically, the day-ahead forecasting capability of Bayesian neural network (BNN), support vector regression (SVR), and regression tree (RT) models was investigated by employing the same dataset for training and performance verification, thus enabling a valid comparison. The training regime analysis demonstrated that the performance of the investigated models was strongly dependent on the timeframe of the train set, training data sequence, and application of irradiance condition filters. Furthermore, accurate results were obtained utilizing only the measured power output and other calculated parameters for training. Consequently, useful information is provided for establishing a robust day-ahead forecasting methodology that utilizes calculated input parameters and an optimal supervised learning approach. Finally, the obtained results demonstrated that the optimally constructed BNN outperformed all other machine learning models achieving forecasting accuracies lower than 5%.
Progress in Photovoltaics: Research and Applications
Data integrity is crucial for the performance and reliability analysis of photovoltaic (PV) systems, since actual in-field measurements commonly exhibit invalid data caused by outages and component failures. The scope of this paper is to present a complete methodology for PV data processing and quality verification in order to ensure improved PV performance and reliability analyses. Data quality routines (DQRs) were developed to ensure data fidelity by detecting and reconstructing invalid data through a sequence of filtering stages and inference techniques. The obtained results verified that PV performance and reliability analyses are sensitive to the fidelity of data and, therefore, time series reconstruction should be handled appropriately. To mitigate the bias effects of 10% or less invalid data, the listwise deletion technique provided accurate results for performance analytics (exhibited a maximum absolute percentage error of 0.92%). When missing data rates exceed 10%, data inference techniques yield more accurate results. The evaluation of missing power measurements demonstrated that time series reconstruction by applying the Sandia PV Array Performance Model yielded the lowest error among the investigated data inference techniques for PV performance analysis, with an absolute percentage error less than 0.71%, even at 40% missing data rate levels. The verification of the routines was performed on historical datasets from two different locations (desert and steppe climates). The proposed methodology provides a set of standardized analytical procedures to ensure the validity of performance and reliability evaluations that are performed over the lifetime of PV systems.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Journal of Photovoltaics
Although common practice for estimating photovoltaic (PV) degradation rate (RD) assumes a linear behavior, field data have shown that degradation rates are frequently nonlinear. This article presents a new methodology to detect and calculate nonlinear RD based on PV performance time-series from nine different systems over an eight-year period. Prior to performing the analysis and in order to adjust model parameters to reflect actual PV operation, synthetic datasets were utilized for calibration purposes. A change-point analysis is then applied to detect changes in the slopes of PV trends, which are extracted from constructed performance ratio (PR) time-series. Once the number and location of change points is found, the ordinary least squares method is applied to the different segments to compute the corresponding rates. The obtained results verified that the extracted trends from the PR time-series may not always be linear and therefore, 'nonconventional' models need to be applied. All thin-film technologies demonstrated nonlinear behavior whereas nonlinearity detected in the crystalline silicon systems is thought to be due to a maintenance event. A comparative analysis between the new methodology and other conventional methods demonstrated levelized cost of energy differences of up to 6.14%, highlighting the importance of considering nonlinear degradation behavior.
Applied Energy
A main challenge towards ensuring large-scale and seamless integration of photovoltaic systems is to improve the accuracy of energy yield forecasts, especially in grid areas of high photovoltaic shares. The scope of this paper is to address this issue by presenting a unified methodology for hourly-averaged day-ahead photovoltaic power forecasts with improved accuracy, based on data-driven machine learning techniques and statistical post-processing. More specifically, the proposed forecasting methodology framework comprised of a data quality stage, data-driven power output machine learning model development (artificial neural networks), weather clustering assessment (K-means clustering), post-processing output optimisation (linear regressive correction method) and the final performance accuracy evaluation. The results showed that the application of linear regression coefficients to the forecasted outputs of the developed day-ahead photovoltaic power production neural network improved the performance accuracy by further correcting solar irradiance forecasting biases. The resulting optimised model provided a mean absolute percentage error of 4.7% when applied to historical system datasets. Finally, the model was validated both, at a hot as well as a cold semi-arid climatic location, and the obtained results demonstrated close agreement by yielding forecasting accuracies of mean absolute percentage error of 4.7% and 6.3%, respectively. The validation analysis provides evidence that the proposed model exhibits high performance in both forecasting accuracy and stability.
Conference Record of the IEEE Photovoltaic Specialists Conference
Optimum and reliable photovoltaic (PV) plant performance requires accurate diagnostics of system losses and failures. Data-driven approaches can classify such losses however, the appropriate PV data features required for accurate classification remains unclear. To avoid misclassification, this study reviews the potential issues associated with inabilities to separate fault conditions that overlap using certain data features. Feature selection techniques that define each feature's importance and identify the set of features necessary for producing the most accurate results are also explored. The experiment quantified the amount of overlap using both maximum power point (MPP) and current and voltage (I-V) curve data sets. The I -V data provided an overall increase in classification accuracy of 8% points above the case where only MPP was available.
Conference Record of the IEEE Photovoltaic Specialists Conference
It is a common approach to assume a constant performance drop during the photovoltaic (PV) lifetime. However, operational data demonstrated that PV degradation rate (R_{D}) may exhibit nonlinear behavior, which neglecting it may increase financial risks. This study presents and compares three approaches, based on open-source libraries, which are able to detect and calculate nonlinear R_{D}. Two of these approaches include trend extraction and change-point detection methods, which are frequently used statistical tools. Initially, the processed monthly PV performance ratio (PR) time-series are decomposed in order to extract the trend and change-point analysis techniques are applied to detect changes in the slopes. Once the number of change-points is optimized by each model, the ordinary least squares (OLS) method is applied on the different segments to compute the corresponding rates. The third methodology is a regression analysis method based on simultaneous segmentation and slope extraction. Since the 'real' R_{D} value is an unknown parameter, this investigation was based on synthetic datasets with emulated two-step degradation rates. As such, the performance of the three approaches was compared exhibiting mean absolute errors ranging from 0 to 0.46%/year whereas the change-point position detection differed from 0 to 10 months.
Abstract not provided.
Abstract not provided.
Renewable Energy
Dust accumulation significantly affects the performance of photovoltaic modules and its impact can be mitigated by various cleaning methods. Optimizing the cleaning frequency is essential to minimize the soiling losses and, at the same time, the costs. However, the effectiveness of cleaning lowers with time because of the reduced energy yield due to degradation. Additionally, economic factors such as the escalation in electricity price and inflation can compound or counterbalance the effect of degradation on the soiling mitigation profits. The present study analyzes the impact of degradation, escalation in electricity price and inflation on the revenues and costs of cleanings and proposes a methodology to maximize the profits of soiling mitigation of any system. The energy performance and soiling losses of a 1 MW system installed in southern Spain were analyzed and integrated with theoretical linear and nonlinear degradation rate patterns. The Levelized Cost of Energy and Net Present Value were used as criteria to identify the optimum cleaning strategies. The results showed that the two metrics convey distinct cleaning recommendations, as they are influenced by different factors. For the given site, despite the degradation effects, the optimum cleaning frequency is found to increase with time of operation.
Abstract not provided.