It is commonly assumed that cleaning photovoltaic (PV) modules is unnecessary when the inverter is undersized because clipping will sufficiently mask the soiling losses. Clipping occurs when the inverter's AC size is smaller than the overall modules' DC capacity and leads to the conversion of only part of the PV-generated DC energy into AC. This study evaluates the validity of this assumption, theoretically investigating the current magnitude of clipping and its effect on soiling over the contiguous United States. This is done by modelling energy yield, clipping and soiling across a grid of locations. The results show that in reality, under the current deployment trends, inverter undersizing minimally affects soiling, as it reduces these losses by no more than 1%absolute. Indeed, clipping masks soiling in areas where losses are already low, whereas it has a negligible effect where soiling is most significant. However, the mitigation effects might increase under conditions of lower performance losses or more pronounced inverter undersizing. In any case, one should take into account that degradation makes clipping less frequent as systems age, also decreasing its masking effect on soiling. Therefore, even if soiling was initially mitigated by the inverter undersizing, its effect would become more visible with time.
All freely available plane-of-array (POA) transposition models and photovoltaic (PV) temperature and performance models in pvlib-python and pvpltools-python were examined against multiyear field data from Albuquerque, New Mexico. The data include different PV systems composed of crystalline silicon modules that vary in cell type, module construction, and materials. These systems have been characterized via IEC 61853-1 and 61853-2 testing, and the input data for each model were sourced from these system-specific test results, rather than considering any generic input data (e.g., manufacturer's specification [spec] sheets or generic Panneau Solaire [PAN] files). Six POA transposition models, 7 temperature models, and 12 performance models are included in this comparative analysis. These freely available models were proven effective across many different types of technologies. The POA transposition models exhibited average normalized mean bias errors (NMBEs) within ±3%. Most PV temperature models underestimated temperature exhibiting mean and median residuals ranging from −6.5°C to 2.7°C; all temperature models saw a reduction in root mean square error when using transient assumptions over steady state. The performance models demonstrated similar behavior with a first and third interquartile NMBEs within ±4.2% and an overall average NMBE within ±2.3%. Although differences among models were observed at different times of the day/year, this study shows that the availability of system-specific input data is more important than model selection. For example, using spec sheet or generic PAN file data with a complex PV performance model does not guarantee a better accuracy than a simpler PV performance model that uses system-specific data.
In the rapidly evolving field of solar energy, Photovoltaic (PV) manufacturers are constantly challenged by the degradation of PV modules due to localized overheating, commonly known as hotspots. This issue not only reduce the efficiency of solar panels but, in severe cases, can lead to irreversible damage, malfunctioning, and even fire hazards. Addressing this critical challenge, our research introduces an innovative electronic device designed to effectively mitigate PV hotspots. This pioneering solution consists of a novel combination of a current comparator and a current mirror circuit. These components are uniquely integrated with an automatic switching mechanism, notably eliminating the need for traditional bypass diodes. We rigorously tested and validated this device on PV modules exhibiting both adjacent and non-adjacent hotspots. Our findings are groundbreaking: the hotspot temperatures were significantly reduced from a dangerous 55 °C to a safer 35 °C. Moreover, this intervention remarkably enhanced the output power of the modules by up to 5.3%. This research not only contributes a practical solution to a longstanding problem in solar panel efficiency but also opens new pathways for enhancing the safety and longevity of solar PV systems.
Different data pipelines and statistical methods are applied to photovoltaic (PV) performance datasets to quantify the performance loss rate (PLR). Since the real values of PLR are unknown, a variety of unvalidated values are reported. As such, the PV industry commonly assumes PLR based on statistically extracted ranges from the literature. However, the accuracy and uncertainty of PLR depend on several parameters including seasonality, local climatic conditions, and the response of a particular PV technology. In addition, the specific data pipeline and statistical method used affect the accuracy and uncertainty. To provide insights, a framework of (≈200 million) synthetic simulations of PV performance datasets using data from different climates is developed. Time series with known PLR and data quality are synthesized, and large parametric studies are conducted to examine the accuracy and uncertainty of different statistical approaches over the contiguous US, with an emphasis on the publicly available and “standardized” library, RdTools. In the results, it is confirmed that PLRs from RdTools are unbiased on average, but the accuracy and uncertainty of individual PLR estimates vary with climate zone, data quality, PV technology, and choice of analysis workflow. Best practices and improvement recommendations based on the findings of this study are provided.
The Photovoltaic (PV) Performance Modeling Collaborative (PVPMC) organized a blind PV performance modeling intercomparison to allow PV modelers to blindly test their models and modeling ability against real system data. Measured weather and irradiance data were provided along with detailed descriptions of PV systems from two locations (Albuquerque, New Mexico, USA, and Roskilde, Denmark). Participants were asked to simulate the plane-of-array irradiance, module temperature, and DC power output from six systems and submit their results to Sandia for processing. The results showed overall median mean bias (i.e., the average error per participant) of 0.6% in annual irradiation and −3.3% in annual energy yield. While most PV performance modeling results seem to exhibit higher precision and accuracy as compared to an earlier blind PV modeling study in 2010, human errors, modeling skills, and derates were found to still cause significant errors in the estimates.
Deceglie, Michael G.; Anderson, Kevin; Fregosi, Daniel; Hobbs, William B.; Mikofski, Mark A.; Theristis, Marios; Meyers, Bennet E.
Photovoltaic systems may underperform expectations for several reasons, including inaccurate initial estimates, suboptimal operations and maintenance, or component degradation. Accurate assessment of these loss factors aids in addressing root causes of underperformance and in realizing accurate expectations and models. The performance loss rate (PLR) is a commonly cited high-level metric for the change in system output over time, but there is no precise, standard definition. Herein, an annualized definition of PLR that is inclusive of all loss factors and that can capture nonlinear changes to performance over time is proposed. The importance of distinguishing between recoverable and nonrecoverable losses which underly PLR is highlighted.
This document provides the instructions for participating in the 2021 blind photovoltaic (PV) modeling intercomparison organized by the PV Performance Modeling Collaborative (PVPMC). It describes the system configurations, metadata, and other information necessary for the modeling exercise. The practical details of the validation datasets are also described. The datasets were published online in open access in April 2023, after completing the analysis of the results.
The accurate quantification of the performance loss rate of photovoltaic systems is critical for project economics. Following the current research activities in the photovoltaic performance and reliability field, this work presents a comparative assessment between common change point methods for performance loss rate estimation of fielded photovoltaic installations. An extensive testing campaign was thus performed to evaluate time series analysis approaches for performance loss rate evaluation of photovoltaic systems. Historical electrical data from eleven photovoltaic systems installed in Nicosia, Cyprus, and the locations’ meteorological measurements over a period of 8 years were used for this investigation. The application of change point detection algorithms on the constructed monthly photovoltaic performance ratio series revealed that the obtained trend might not always be linear. Specifically, thin film photovoltaic systems showed nonlinear behavior, while nonlinearities were also detected for some crystalline silicon photovoltaic systems. When applying several change point techniques, different numbers and locations of changes were detected, resulting in different performance loss rate values (varying by up to 0.85%/year even for the same number of change points). The results highlighted the importance of the application of nonlinear techniques and the need to extract a robust nonlinear model for detecting significant changes in time series data and estimating accurately the performance loss rate of photovoltaic installations.
This report describes the creation process and final content of a spectral irradiance dataset for Albuquerque, New Mexico accompanied by a set of spectral response measurements for modules deployed at the same location. The spectral irradiance measurements were made using horizontally mounted spectroradiometers; therefore, they represent global horizontal irradiance. The dataset combines non-continuous spectroradiometer and weather measurements from a two-year period into a single calendar year. The data files are accompanied by extensive metadata as well as example calculations and graphs to demonstrate the potential uses of this database. The spectral response measurements were carried out by the National Renewable Energy Laboratory using 12 commercial silicon modules types that are undergoing long-term evaluation at Sandia National Laboratories in Albuquerque.
This report describes the structure and content of an open dataset created for the purpose of testing and validating PV module temperature prediction models and their parameters. The dataset contains the main environmental parameters that affect temperature: irradiance, ambient temperature, wind speed and down-welling infrared radiation, as well as measured back-of-module temperature.
The cost of photovoltaic (PV) modules has declined by 85% since 2010. To achieve this reduction, manufacturers altered module designs and bill of materials; changes that could affect module durability and reliability. To determine if these changes have affected module durability, we measured the performance degradation of 834 fielded PV modules representing 13 module types from 7 manufacturers in 3 climates over 5 years. Degradation rates (Rd) are highly nonlinear over time, and seasonal variations are present in some module types. Mean and median degradation rate values of −0.62%/year and −0.58%/year, respectively, are consistent with rates measured for older modules. Of the 23 systems studied, 6 have degradation rates that will exceed the warranty limits in the future, whereas 13 systems demonstrate the potential of achieving lifetimes beyond 30 years, assuming Rd trends have stabilized.
We propose a set of benchmark tests for current-voltage (IV) curve fitting algorithms. Benchmark tests enable transparent and repeatable comparisons among algorithms, allowing for measuring algorithm improvement over time. An absence of such tests contributes to the proliferation of fitting methods and inhibits achieving consensus on best practices. Benchmarks include simulated curves with known parameter solutions, with and without simulated measurement error. We implement the reference tests on an automated scoring platform and invite algorithm submissions in an open competition for accurate and performant algorithms.
We propose a set of benchmark tests for current-voltage (IV) curve fitting algorithms. Benchmark tests enable transparent and repeatable comparisons among algorithms, allowing for measuring algorithm improvement over time. An absence of such tests contributes to the proliferation of fitting methods and inhibits achieving consensus on best practices. Benchmarks include simulated curves with known parameter solutions, with and without simulated measurement error. We implement the reference tests on an automated scoring platform and invite algorithm submissions in an open competition for accurate and performant algorithms.
Photovoltaic (PV) performance is affected by reversible and irreversible losses. These can typically be mitigated through responsive and proactive operations and maintenance (O&M) activities. However, to generate profit, the cost of O&M must be lower than the value of the recovered electricity. This value depends both on the amount of recovered energy and on the electricity prices, which can vary significantly over time in spot markets. The present work investigates the impact of the electricity price variability on the PV profitability and on the related O&M activities in Italy, Portugal, and Spain. It is found that the PV revenues varied by 1.6 × to 1.8 × within the investigated countries in the last 5 years. Moreover, forecasts predict higher average prices in the current decade compared to the previous one. These will increase the future PV revenues by up to 60% by 2030 compared to their 2015–2020 mean values. These higher revenues will make more funds available for better maintenance and for higher quality components, potentially leading to even higher energy yield and profits. Linearly growing or constant price assumptions cannot fully reproduce these expected price trends. Furthermore, significant price fluctuations can lead to unexpected scenarios and alter the predictions.
Irradiance transposition models seem to perform well, except the Isotropic with -11.25 W/m2 underestimation. Most temperature models could not capture behavior when ΔΤ between module and ambient is negative. Uncertainties due to derate factors: modelers overbudgeted resulting in significant power underestimation; maybe ~10% is appropriate for commercial systems but not lab-scale? Most software and models cluster together showing good reproducibility among participants. Modeler’s skills seem to be more important than the PV model itself (flat efficiency with irradiance, positive power temperature coefficients, etc.). Results and best practices will be communicated in a journal article.