Publications

Results 76–80 of 80

Search results

Jump to search filters

Feature Selection of Photovoltaic System Data to Avoid Misclassification of Fault Conditions

Conference Record of the IEEE Photovoltaic Specialists Conference

Jones, Christian B.; Theristis, Marios; Stein, Joshua; Hansen, Clifford

Optimum and reliable photovoltaic (PV) plant performance requires accurate diagnostics of system losses and failures. Data-driven approaches can classify such losses however, the appropriate PV data features required for accurate classification remains unclear. To avoid misclassification, this study reviews the potential issues associated with inabilities to separate fault conditions that overlap using certain data features. Feature selection techniques that define each feature's importance and identify the set of features necessary for producing the most accurate results are also explored. The experiment quantified the amount of overlap using both maximum power point (MPP) and current and voltage (I-V) curve data sets. The I -V data provided an overall increase in classification accuracy of 8% points above the case where only MPP was available.

More Details

Modeling nonlinear photovoltaic degradation rates

Conference Record of the IEEE Photovoltaic Specialists Conference

Theristis, Marios; Livera, Andreas; Micheli, Leonardo; Jones, Christian B.; Makrides, George; Georghiou, George E.; Stein, Joshua

It is a common approach to assume a constant performance drop during the photovoltaic (PV) lifetime. However, operational data demonstrated that PV degradation rate (R_{D}) may exhibit nonlinear behavior, which neglecting it may increase financial risks. This study presents and compares three approaches, based on open-source libraries, which are able to detect and calculate nonlinear R_{D}. Two of these approaches include trend extraction and change-point detection methods, which are frequently used statistical tools. Initially, the processed monthly PV performance ratio (PR) time-series are decomposed in order to extract the trend and change-point analysis techniques are applied to detect changes in the slopes. Once the number of change-points is optimized by each model, the ordinary least squares (OLS) method is applied on the different segments to compute the corresponding rates. The third methodology is a regression analysis method based on simultaneous segmentation and slope extraction. Since the 'real' R_{D} value is an unknown parameter, this investigation was based on synthetic datasets with emulated two-step degradation rates. As such, the performance of the three approaches was compared exhibiting mean absolute errors ranging from 0 to 0.46%/year whereas the change-point position detection differed from 0 to 10 months.

More Details

Photovoltaic cleaning frequency optimization under different degradation rate patterns

Renewable Energy

Micheli, Leonardo; Theristis, Marios; Talavera, Diego L.; Almonacid, Florencia; Stein, Joshua; Fernandez, Eduardo F.

Dust accumulation significantly affects the performance of photovoltaic modules and its impact can be mitigated by various cleaning methods. Optimizing the cleaning frequency is essential to minimize the soiling losses and, at the same time, the costs. However, the effectiveness of cleaning lowers with time because of the reduced energy yield due to degradation. Additionally, economic factors such as the escalation in electricity price and inflation can compound or counterbalance the effect of degradation on the soiling mitigation profits. The present study analyzes the impact of degradation, escalation in electricity price and inflation on the revenues and costs of cleanings and proposes a methodology to maximize the profits of soiling mitigation of any system. The energy performance and soiling losses of a 1 MW system installed in southern Spain were analyzed and integrated with theoretical linear and nonlinear degradation rate patterns. The Levelized Cost of Energy and Net Present Value were used as criteria to identify the optimum cleaning strategies. The results showed that the two metrics convey distinct cleaning recommendations, as they are influenced by different factors. For the given site, despite the degradation effects, the optimum cleaning frequency is found to increase with time of operation.

More Details
Results 76–80 of 80
Results 76–80 of 80