Publications

Results 101–125 of 268

Search results

Jump to search filters

Validation and Recalibration of the Solubility Models in Support of the Heater Test in Salt Formations

MRS Advances

Xiong, Yongliang X.; Kuhlman, Kristopher L.; Mills, Melissa M.; Wang, Yifeng

The US Department of Energy Office of Nuclear Energy is conducting a brine availability heater test to characterize the thermal, mechanical, hydrological and chemical response of salt at elevated temperatures. In the heater test, brines will be collected and analyzed for chemical compositions. In order to support the geochemical modeling of chemical evolutions of the brines during the heater test, we are recalibrating and validating the solubility models for the mineral constituents in salt formations up to 100°C, based on the solubility data in multiple component systems as well as simple systems from literature. In this work, we systematically compare the model-predicted values based on the various solubility models related to the constituents of salt formations, with the experimental data. As halite is the dominant constituent in salt formations, we first test the halite solubility model in the Na-Mg-Cl dominated brines. We find the existing halite solubility model systematically over-predict the solubility of halite. We recalibrate the halite model, which can reproduce halite solubilities in Na-Mg-Cl dominated brines well. As gypsum/anhydrite in salt formations controls the sulfate concentrations in associated brines, we test the gypsum solubility model in NaCl solutions up to 5.87 mol•kg-1 from 25°C to 50°C. The testing shows that the current gypsum solubility model reproduces the experimental data well when NaCl concentrations are less than 1 mol•kg-1. However, at NaCl concentrations higher than 1, the model systematically overpredicts the solubility of gypsum. In the Na - Cl - SO4 - CO3 system, the validation tests up to 100°C demonstrate that the model excellently reproduces the experimental data for the solution compositions equilibrated with one single phase such as halite (NaCl) or thenardite (Na2SO4), with deviations equal to, or less than, 1.5 %. The model is much less ideal in reproducing the compositions in equilibrium with the assemblages of halite + thenardite, and of halite + thermonatrite (Na2CO3•H2O), with deviations up to 31 %. The high deviations from the experimental data for the multiple assemblages in this system at elevated temperatures may be attributed to the facts that the database has the Pitzer interaction parameters for Cl - CO3 and SO4 - CO3 only at 25°C. In the Na - Ca - SO4 - HCO3 system, the validation tests also demonstrate that the model reproduces the equilibrium compositions for one single phase such as gypsum better than the assemblages of more than one phase.

More Details

Eigenvalue Uncoupling of Electrokinetic Flows

Kuhlman, Kristopher L.; Malama, Bwalya

We present an approach to uncoupling the pair of transient governing equations used in electrokinetics (i.e., streaming potential and electroosmosis). This approach allows for the solution of two uncoupled "intermediate" equations, then the physical solution is found by recombination of these intermediate potentials through a matrix multiplication. We present numerically stable expressions for the coefficients, and an example showing electrokinetics arising from pumping a fully penetrating well in a confined aquifer, surrounded by insulating aquicludes. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. (SAND2019-8712 A)

More Details

Salt Heater Test (FY19), Rev. 2

Mills, Melissa M.; Kuhlman, Kristopher L.; Matteo, Edward N.; Herrick, Courtney G.; Nemer, Martin N.; Heath, Jason; Xiong, Yongliang X.; Lopez, Carlos M.; Stauffer, Philip; Boukhalfa, Hakim; Guiltinan, Eric; Rahn, Thom; Weaver, Doug; Dozier, Brian; Otto, Shawn; Rutqvist, Jonny; Wu, Yuxin; Hu, Mengsu; Crandall, Dustin

This report summarizes the 2019 fiscal year (FY19) status of the borehole heater test in salt funded by the US Department of Energy Office of Nuclear Energy (DOE-NE) Spent Fuel and Waste Science & Technology (SFWST) campaign. This report satisfies SFWST level-three milestone report M3SF-19SN010303033. This report is an update of the April 2019 level-two milestone report M2SF-19SNO10303031 to reflect the nearly complete as-built status of the borehole heater test. This report discusses the fiscal year 2019 (FY19) design, implementation, and preliminary data interpretation plan for a set of borehole heater tests call the brine availability tests in salt (BATS), which is funded by the DOE Office of Nuclear Energy (DOE-NE) at the Waste Isolation Pilot Plant (WIPP), a DOE Office of Environmental Management (DOE-EM) site. The organization of BATS is outlined in Project Plan: Salt In-Situ Heater Test (SNL, 2018). An early design of the field test is laid out in Kuhlman et al. (2017), including extensive references to previous field tests, which illustrates aspects of the present test. The previous test plan by Stauffer et al. (2015) places BATS in the context of a multi-year testing strategy, which involves tests of multiple scales and processes, eventually culminating in a drift-scale disposal demonstration. This level-3 milestone report is an update of a level-2 milestone report from April 2019 by the same name. The update adds as-built details of the heater test, which at the time of writing (August 2019) is near complete implementation.

More Details

International Collaborations on Radioactive Waste Disposal in Salt

Kuhlman, Kristopher L.; Matteo, Edward N.; Reedlunn, Benjamin R.; Mills, Melissa M.; Sobolik, Steven R.; Gross, Michael B.; Simo, Eric

This report is a summary of the international collaboration and laboratory work funded by the US Department of Energy Office (DOE) of Nuclear Energy Spent Fuel and Waste Science & Technology (SFWST) as part of the Sandia National Laboratories Salt R&D work package. This report satisfies milestone level-four milestone M4SF-19SNO10303064. Several stand-alone sections make up this summary report, each completed by the participants. The first two sections discuss international collaborations on geomechanical benchmarking exercises (WEIMOS), granular salt reconsolidation (KOMPASS), engineered barriers (RANGERS), and documentation of Features, Events, and Processes (FEPs).

More Details

Processes in Salt Repositories

Kuhlman, Kristopher L.

This report presents a discussion of processes relevant in a repository for heat-generating waste in geologic salt, from the point of view of coupled process models. This report is in essentially an update of Kuhlman, in light of recent R&D in the DOE Office of Nuclear Energy (DOENE) Salt Disposal Research and Development program, including the heater test being planned at the Waste Isolation Pilot Plant (WIPP).

More Details

Salt Heater Test (FY19)

Mills, Melissa M.; Kuhlman, Kristopher L.; Matteo, Edward N.; Herrick, Courtney G.; Nemer, Martin N.; Heath, Jason; Xiong, Yongliang X.; Paul, Matthew J.; Stauffer, Philip; Boukhalfa, Hakim; Guiltinan, Eric; Rahn, Thom; Weaver, Doug; Dozier, Brian; Otto, Shawn; Rutqvist, Jonny; Wu, Yuxin; Ajo-Franklin, Jonathan; Hu, Mengsu

This report discusses the fiscal year 2019 (FY19) design, implementation, and preliminary data interpretation plan for a set of borehole heater tests call the brine availability tests in salt (BATS), which is funded by the DOE Office of Nuclear Energy (DOE-NE) at the Waste Isolation Pilot Plant (WIPP). The organization of BATS is outlined in Project Plan: Salt In-Situ Heater Test. An early design of the field test is laid out in Kuhlman et al., including extensive references to previous field tests, which illustrates aspects of the present test. The previous test plan by Stauffer et al., places BATS in the context of a multi-year testing strategy, which involves tests of multiple scales and processes, possibly culminating in a drift-scale disposal demonstration.

More Details

Deep Borehole Laboratory and Borehole Testing Strategy: Generic Drilling and Testing Plan

Kuhlman, Kristopher L.; Hardin, Ernest H.; Rigali, Mark J.

This report presents a generic (i.e., site-independent) preliminary plan for drilling, testing, sampling, and analyzing data for a deep characterization borehole drilled into crystalline basement for the purposes of assessing the suitability of a site for deep borehole disposal (DBD). This research was performed as part of the deep borehole field test (DBFT). Based on revised U.S. Department of Energy (DOE) priorities in mid-2017, the DBFT and other research related to a DBD option was discontinued; ongoing work and documentation were closed out by the end of fiscal year (FY) 2017. This report was initiated as part of the DBFT and documented as an incomplete draft at the end of FY 2017. The report was finalized by Sandia National Laboratories in FY2018 without DOE funding, subsequent to the termination of the DBFT, and published in FY2019. This report presents a possible sampling, testing, and analysis campaign that could be carried out as part of a future project to quantify geochemical, geomechanical, geothermal, and geohydrologic conditions encountered at depths up to 5 km in crystalline basement.

More Details
Results 101–125 of 268
Results 101–125 of 268