Modeling Water Distribution System Resilience
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Advances in Water Resources
Multiphase flow in capillary regimes is a fundamental process in a number of geoscience applications. The ability to accurately define wetting characteristics of porous media can have a large impact on numerical models. In this paper, a newly developed automated three-dimensional contact angle algorithm is described and applied to high-resolution X-ray microtomography data from multiphase bead pack experiments with varying wettability characteristics. The algorithm calculates the contact angle by finding the angle between planes fit to each solid/fluid and fluid/fluid interface in the region surrounding each solid/fluid/fluid contact point. Results show that the algorithm is able to reliably compute contact angles using the experimental data. The in situ contact angles are typically larger than flat surface laboratory measurements using the same material. Wetting characteristics in mixed-wet systems also change significantly after displacement cycles.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Water Resources Planning and Management
In the event of contamination in a water distribution network (WDN), source identification (SI) methods that analyze sensor data can be used to identify the source location(s). Knowledge of the source location and characteristics are important to inform contamination control and cleanup operations. Various SI strategies that have been developed by researchers differ in their underlying assumptions and solution techniques. The following manuscript presents a systematic procedure for testing and evaluating SI methods. The performance of these SI methods is affected by various factors including the size of WDN model, measurement error, modeling error, time and number of contaminant injections, and time and number of measurements. This paper includes test cases that vary these factors and evaluates three SI methods on the basis of accuracy and specificity. The tests are used to review and compare these different SI methods, highlighting their strengths in handling various identification scenarios. These SI methods and a testing framework that includes the test cases and analysis tools presented in this paper have been integrated into EPA's Water Security Toolkit (WST), a suite of software tools to help researchers and others in the water industry evaluate and plan various response strategies in case of a contamination incident. Finally, a set of recommendations are made for users to consider when working with different categories of SI methods.
Advances in sensor technology have rapidly increased our ability to monitor natural and human-made physical systems. In many cases, it is critical to process the resulting large volumes of data on a regular schedule and alert system operators when the system has changed. Automated quality control and performance monitoring can allow system operators to quickly detect performance issues. Pecos is an open source python package designed to address this need. Pecos includes built-in functionality to monitor performance of time series data. The software can be used to automatically run a series of quality control tests and generate customized reports which include performance metrics, test results, and graphics. The software was developed specifically for solar photovoltaic system monitoring, and is intended to be used by industry and the research community. The software can easily be customized for other applications. The following Pecos documentation includes installation instructions and examples, description of software features, and software license. It is assumed that the reader is familiar with the Python Programming Language. References are included for additional background on software components.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The Database Performance Monitoring (DPM) software (copyright in processes) is being developed at Sandia National Laboratories to perform quality control analysis on time series data. The software loads time indexed databases (currently csv format), performs a series of quality control tests defined by the user, and creates reports which include summary statistics, tables, and graphics. DPM can be setup to run on an automated schedule defined by the user. For example, the software can be run once per day to analyze data collected on the previous day. HTML formatted reports can be sent via email or hosted on a website. To compare performance of several databases, summary statistics and graphics can be gathered in a dashboard view which links to detailed reporting information for each database. The software can be customized for specific applications.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Geofluids
Understanding the effect of changing stress conditions on multiphase flow in porous media is of fundamental importance for many subsurface activities including enhanced oil recovery, water drawdown from aquifers, soil confinement, and geologic carbon storage. Geomechanical properties of complex porous systems are dynamically linked to flow conditions, but their feedback relationship is often oversimplified due to the difficulty of representing pore‐scale stress deformation and multiphase flow characteristics in high fidelity. In this work, we performed pore‐scale experiments of single‐ and multiphase flow through bead packs at different confining pressure conditions to elucidate compaction‐dependent characteristics of granular packs and their impact on fluid flow. A series of drainage and imbibition cycles were conducted on a water‐wet, soda‐lime glass bead pack under varying confining stress conditions. Simultaneously, X‐ray micro‐
Abstract not provided.
Water Resources Research
Abstract not provided.
Resilience is a concept that is being used increasingly to refer to the capacity of infrastructure systems to be prepared for and able to respond effectively and rapidly to hazardous events. In Section 2 of this report, drinking water hazards, resilience literature, and available resilience tools are presented. Broader definitions, attributes and methods for measuring resilience are presented in Section 3. In Section 4, quantitative systems performance measures for water distribution systems are presented. Finally, in Section 5, the performance measures and their relevance to measuring the resilience of water systems to hazards is discussed along with needed improvements to water distribution system modeling tools.
Abstract not provided.
Abstract not provided.