Second Harmonic Generation from Arrays of Nonlinear Metamaterial Nanocavities
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Applied Physics Letters
Abstract not provided.
Abstract not provided.
Abstract not provided.
CLEO: QELS - Fundamental Science, CLEO_QELS 2015
We use epsilon-near-zero modes in semiconductor nanolayers to design a system whose spectral properties are controlled by their interaction with multi-dipole resonances. This design flexibility renders our platform attractive for efficient nonlinear composite materials. © OSA 2015.
CLEO: Science and Innovations, CLEO-SI 2015
Lasing is demonstrated from nonpolar III-nitride core-shell multi-quantum-well nanowires. The nanowire lasers were fabricated by coupling a top-down and bottom-up methodology and achieved lasing at wavelengths below the GaN bandedge. © OSA 2015.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Nano Letters
Metallic nanocavities with deep subwavelength mode volumes can lead to dramatic changes in the behavior of emitters placed in their vicinity. This collocation and interaction often leads to strong coupling. Here, we present for the first time experimental evidence that the Rabi splitting is directly proportional to the electrostatic capacitance associated with the metallic nanocavity. The system analyzed consists of different metamaterial geometries with the same resonance wavelength coupled to intersubband transitions in quantum wells.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Integrated Photonics Research, Silicon and Nanophotonics, IPRSN 2015
Metallic films much thinner than the skin depth can support surface plasmon modes whose dispersion approaches the plasma frequency, giving rise to the so-called epsilon-near-zero mode. We analyse its features and observation conditions. © 2015 OSA.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Applied Physics Letters
Lasing is demonstrated from gallium nitride nanotubes fabricated using a two-step top-down technique. By optically pumping, we observed characteristics of lasing: a clear threshold, a narrow spectral, and guided emission from the nanotubes. In addition, annular lasing emission from the GaN nanotube is also observed, indicating that cross-sectional shape control can be employed to manipulate the properties of nanolasers. The nanotube lasers could be of interest for optical nanofluidic applications or application benefitting from a hollow beam shape.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review Letters
Abstract not provided.
Abstract not provided.
ACS Photonics
(Figure Presented) We present the design, realization, and characterization of optical strong light-matter coupling between intersubband transitions within a semiconductor heterostructures and planar metamaterials in the near-infrared spectral range. The strong light-matter coupling entity consists of a III-nitride intersubband superlattice heterostructure, providing a two-level system with a transition energy of ∼0.8 eV (λ ∼1.55 μm) and a planar "dogbone" metamaterial structure. As the bare metamaterial resonance frequency is varied across the intersubband resonance, a clear anticrossing behavior is observed in the frequency domain. This strongly coupled entity could enable the realization of electrically tunable optical filters, a new class of efficient nonlinear optical materials, or intersubband-based light-emitting diodes.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Applied Physics Letters
We utilize the unique dispersion properties of leaky plasmon polaritons in epsilon-near-zero (ENZ) thin films to demonstrate thermal radiation control. Owing to its highly flat dispersion above the light line, a thermally excited leaky wave at the ENZ frequency out-couples into free space without any scattering structures, resulting in a narrowband, wide-angle, p-polarized thermal emission spectrum. We demonstrate this idea by measuring angle- and polarization-resolved thermal emission spectra from a single layer of unpatterned, doped semiconductors with deep-subwavelength film thickness (d / λ 0 ∼ 6 × 10 - 3, where d is the film thickness and λ 0 is the free space wavelength). We show that this semiconductor ENZ film effectively works as a leaky wave thermal radiation antenna, which generates far-field radiation from a thermally excited mode. The use of semiconductors makes the radiation frequency highly tunable by controlling doping densities and also facilitates device integration with other components. Therefore, this leaky plasmon polariton emission from semiconductor ENZ films provides an avenue for on-chip control of thermal radiation.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.