Solid State Transformer Architecture and Control Compensation for Common Mode Currents
Abstract not provided.
Abstract not provided.
Paper targets SPEEDAM 2024 (https://www.speedam.org). The paper provides details of a model predictive control designed to operate a four-zone medium-voltage AC/DC electric ship.
Abstract not provided.
2024 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2024
Our present electric power grid maximizes spinning inertia of fossil fuel generators (inherent energy storage) to meet stability and performance requirements. Our goal is to begin to investigate the replacement of the large spinning inertia of fossil fuel generators with energy storage systems (ESS) including information flow as a necessary part of the renewable energy sources (RES) and subject to certain criteria. General criteria metrics include: energy storage, information flow, estimation, communication links, central versus decentralized, etc. Our focus is on evaluating the Fisher Information Equivalency (FIE) metric as a multi-criteria trade-off cost function for the minimization of ESS options and information flow. This paper begins with a formal conceptual definition of an infinite bus. Then a simple example of a One Machine Infinite Bus (OMIB) system with a Unified Power Flow Controller (UPFC) to demonstrate the FIE-based approach to minimize the ESS. A second more detailed example of several spinning machines are included with representative power electronic and ESS for RES that are attached to the electric power grid. A simple trade-study begins to highlight requirements to support large penetration of RES. Keep in mind for a large scale high penetration of RES will require large investments in ESS which we want to minimize.
2023 IEEE Texas Power and Energy Conference, TPEC 2023
A high altitude electromagnetic pulse (HEMP) caused by a nuclear explosion has the potential to severely impact the operation of large-scale electric power grids. This paper presents a top-down mitigation design strategy that considers grid-wide dynamic behavior during a simulated HEMP event - and uses optimal control theory to determine the compensation signals required to protect critical grid assets. The approach is applied to both a standalone transformer system and a demonstrative 3-bus grid model. The performance of the top-down approach relative to conventional protection solutions is evaluated, and several optimal control objective functions are explored. Finally, directions for future research are proposed.
AIAA SciTech Forum and Exposition, 2023
The following article describes an optimal control algorithm for the operation and study of an electric microgrid designed to power a lunar habitat. A photovoltaic (PV) generator powers the habitat and the presence of predictable lunar eclipses necessitates a system to prioritize and control loads within the microgrid. The algorithm consists of a reduced order model (ROM) that describes the microgrid, a discretization of the equations that result from the ROM, and an optimization formulation that controls the microgrid’s behavior. In order to validate this approach, the paper presents results from simulation based on lunar eclipse information and a schedule of intended loads.
AIAA SciTech Forum and Exposition, 2023
The National Aeronautics and Space Administration’s (NASA) Artemis program seeks to establish the first long-term presence on the Moon as part of a larger goal of sending the first astronauts to Mars. To accomplish this, the Artemis program is designed to develop, test, and demonstrate many technologies needed for deep space exploration and supporting life on another planet. Long-term operations on the lunar base include habitation, science, logistics, and in-situ resource utilization (ISRU). In this paper, a Lunar DC microgrid (LDCMG) structure is the backbone of the energy distribution, storage, and utilization infrastructure. The method to analyze the LDCMG power distribution network and ESS design is the Hamiltonian surface shaping and power flow control (HSSPFC). This ISRU system will include a networked three-microgrid system which includes a Photo-voltaic (PV) array (generation) on one sub-microgrid and water extraction (loads) on the other two microgrids. A system's reduced-order model (ROM) will be used to create a closed-form analytical model. Ideal ESS devices will be placed alongside each state of the ROM. The ideal ESS devices determine the response needed to conform to a specific operating scenario and system specifications.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IFAC-PapersOnLine
This new research provides transformative marine energy technology to effectively power the blue economy. Harmonizing the energy capture and power from Wave Energy Converter (WEC) arrays require innovative designs for the buoy, electric machines, energy storage systems (ESS), and coordinated onshore electric power grid (EPG) integration. This paper introduces two innovative elements that are co-designed to extract the maximum power from; i) individual WEC buoys with a multi-resonance controller design and ii) synchronized with power packet network phase control through the physical placement of the WEC arrays reducing ESS requirements. MATLAB/Simulink models were created for the WEC array dynamics and control systems with Bretschneider irregular wave spectrum as inputs. The numerical simulation results show that for ideal physical WEC buoy array phasing of 60 degrees the ESS peak power and energy capacity requirements are minimized while the multi-resonant controllers optimize EPG power output for each WEC buoy.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Oceans Conference Record (IEEE)
An array of Wave Energy Converters (WEC) is required to supply a significant power level to the grid. However, the control and optimization of such an array is still an open research question. This paper analyzes two aspects that have a significant impact on the power production. First the spacing of the buoys in a WEC array will be analyzed to determine the optimal shift between the buoys in an array. Then the wave force interacting with the buoys will be angled to create additional sequencing between the electrical signals. A cost function is proposed to minimize the power variation and energy storage while maximizing the delivered energy to the onshore point of common coupling to the electrical grid.
2022 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2022
This paper presents a nonlinear control design technique that capitalizes on an hour glass (HG) variable geometry wave energy converter (WEC). The HG buoy is assumed to operate in the heave motion of the wave. The unique interaction between the HG buoy and the wave creates a nonlinear cubic storage effect that produces actual energy storage or reactive power during operation. A multi-frequency Bretschneider spectrum wave excitation input is reviewed for the HG design both with constant and varying steepness angle profiles which demonstrates further increased power generation. Numerical simulations are performed to demonstrate the increase in power generation with changing sea states. The objective is to increase the power generation from multi-frequency nonlinear dynamic sources.
2022 IEEE Energy Conversion Congress and Exposition, ECCE 2022
Pulse power loads are becoming increasingly more common in many applications primarily due to applications like radar, lasers, and the technologies such as EMALS (ElectroMagnetic Aircraft Launch Systems) on next-generation aircraft carriers. Pulse power loads are notorious for causing stability issues. Stability for pulse power loads can be defined as metastable, where the system can be unstable for a portion of the pulse as long as the stability is re-established over the entire pulse. Dynamic characteristics for step changes in load can be improved with a modified boost converter topology in conjunction with bang-bang control. Improvement in the metastability margins will be presented through simulations with the application of the modified topology to pulse power loads.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IET Conference Proceedings
The following research presents an optimal control framework called Oxtimal that facilitates the efficient use and control of photovoltaic (PV) solar arrays. This framework consists of reduced order models (ROM) of photovoltaics and DC connection components connected to an electric power grid (EPG), a discretization of the resulting state equations using an orthogonal spline collocation method (OSCM), and an optimization driver to solve the resulting formulation. Once formulated, the framework is validated using realistic solar profiles and loads from actual residential applications.
Oceans Conference Record (IEEE)
This paper develops a power packet network (PPN) for integrating wave energy converter (WEC) arrays into microgrids. First a simple AC Resistor-Inductor-Capacitor (RLC) circuit operating at a power factor of one is introduced and shown to be a PPN. Next, an AC inverter-based network is analyzed and shown to be a PPN. Then this basic idea is utilized to asynchronously connect a WEC array to an idealized microgrid without additional energy storage. Specifically, NWECs can be physically positioned such that the incoming regular waves will produce an output emulating an N-phase AC system such that the PPN output power is constant. In the final example, the benefits of utilizing PPN phasing is demonstrated that analyzes a grid to substation to WEC array configuration. The numerical simulation results show that for ideal physical WEC buoy phasing of 60 and 120 degrees the energy storage system (ESS) peak power and energy capacity requirements are at the minimum.
Oceans Conference Record (IEEE)
This study presents a numerical model of a WEC array. The model will be used in subsequent work to study the ability of data assimilation to support power prediction from WEC arrays and WEC array design. In this study, we focus on design, modeling, and control of the WEC array. A case study is performed for a small remote Alaskan town. Using an efficient method for modeling the linear interactions within a homogeneous array, we produce a model and predictionless feedback controllers for the devices within the array. The model is applied to study the effects of spectral wave forecast errors on power output. The results of this analysis show that the power performance of the WEC array will be most strongly affected by errors in prediction of the spectral period, but that reductions in performance can realistically be limited to less than 10% based on typical data assimilation based spectral forecasting accuracy levels.
IET Conference Proceedings
Typical Type-4 wind turbines use DC-link inverters to couple the electrical machine to the power grid. Each wind turbine has two power conversion steps. Therefore, an N-turbine farm will have 2N power converters. This work presents a DC bus collection system for a type-4 wind farm that reduces the overall required number of converters and minimizes the energy storage system (ESS) requirements. This approach requires one conversion step per turbine, one converter for the ESS and a single grid coupling converter, which leads to N + 2 converters for the wind farm which will result in significant cost savings. However, one of the trade-offs for a DC collection system is the need for increased energy storage to filter the power variations and improve power quality to the grid. This paper presents a novel approach to an effective DC bus collection system design. The DC collection for the wind farm implements a power phasing control method between turbines that filter the variations and improves power quality while minimizing the need for added energy storage system hardware and improved power quality. The phasing control takes advantage of a novel power packet network concept with nonlinear power flow control design techniques that guarantees both stable and enhanced dynamic performance. This paper presents the theoretical design of the DC collection and phasing control. To demonstrate the efficacy of this approach detailed numerical simulation examples are presented.
Journal of Marine Engineering and Technology
The U.S. Navy is investing in the development of new technologies that broaden warship capabilities and maintain U.S. naval superiority. Specifically, Naval Sea Systems Command (NAVSEA) is supporting the development of power systems technologies that enable the Navy to realise an all-electric warship. A challenge to fielding an all-electric power system architecture includes minimising the size of energy storage systems (ESS) while maintaining the response times necessary to support potential pulsed loads. This work explores the trade-off between energy storage size requirements (i.e. mass) and performance (i.e. peak power, energy storage, and control bandwidth) in the context of a power system architecture that meets the needs of the U.S. Navy. In this work, the simulated time domain responses of a representative power system were evaluated under different loading conditions and control parameters, and the results were considered in conjunction with sizing constraints of and estimated specific power and energy densities of various storage technologies. The simulation scenarios were based on representative operational vignettes, and a Ragone plot was used to illustrate the intersection of potential energy storage sizing with the energy and power density requirements of the system. Furthermore, the energy storage control bandwidth requirements were evaluated by simulation for different loading scenarios. Two approaches were taken to design an ESS: one based only on time domain power and energy requirements from simulation and another based on bandwidth (specific frequency) limitations of various technologies.
IEEE Transactions on Industry Applications
Through the use of advanced control techniques, wave energy converters (WECs) can achieve substantial increases in energy absorption. The motion of the WEC device is a significant contribution to the energy absorbed by the device. Reactive (complex conjugate) control maximizes the energy absorption due to the impedance matching. The issue with complex conjugate control is that, in general, the controller is noncausal, which requires prediction of the incoming waves. This article explores the potential of employing system identification techniques to build a causal transfer function that approximates the complex conjugate controller over a finite frequency band of interest. This approach is quite viable given the band-limited nature of ocean waves. The resulting controller is stable, and the average efficiency of the power captured by the causal controller in realistic ocean waves is 99%, when compared to the noncausal complex conjugate.
OCEANS 2019 MTS/IEEE Seattle, OCEANS 2019
This paper presents a nonlinear geometric buoy design for Wave Energy Converters (WECs). A nonlinear dynamic model is presented for an hour glass (HG) configured WEC. The HG buoy operates in heave motion or as a single Degree-of-Freedom (DOF). The unique formulation of the interaction between the buoy and the waves produces a nonlinear stiffening effect that provides the actual energy storage or reactive power during operation. A Complex Conjugate Control (C3) with a practical Proportional-Derivative (PD) controller is employed to optimize power absorption for off-resonance conditions and applied to a linear right circular cylinder (RCC) WEC. For a single frequency the PDC3 RCC buoy is compared with the HG buoy design. A Bretschneider spectrum of wave excitation input conditions are reviewed and evaluated for the HG buoy. Numerical simulations demonstrate power and energy capture for the HG geometric buoy design which incorporates and capitalizes on the nonlinear geometry to provide reactive power for the single DOF WEC. By exploiting the nonlinear physics in the HG design simplified operational performance is observed when compared to an optimized linear cylindrical WEC. The HG steepness angle α with respect to the wave is varied and initially optimized for improved energy capture.
OCEANS 2019 MTS/IEEE Seattle, OCEANS 2019
Wave Energy Converter (WEC) technologies transform power from the waves to the electrical grid. WEC system components are investigated that support the performance, stability, and efficiency as part of a WEC array. To this end, Aquaharmonics Inc took home the 1.5 million grand prize in the 2016 U.S. Department of Energy Wave Energy Prize, an 18-month design-build-test competition to increase the energy capture potential of wave energy devices. Aquaharmonics intends to develop, build, and perform open ocean testing on a 1: 7 scale device. Preliminary wave tank testing on the mechanical system of the 1: 20 scale device has yielded a data-set of operational conditions and performance. In this paper, the Hamiltonian surface shaping and power flow control (HSSPFC) method is used in conjunction with scaled wave tank test data to explore the design space for the electrical transmission of energy to the shore-side power grid. Of primary interest is the energy storage system (ESS) that will electrically link the WEC to the shore. Initial analysis results contained in this paper provide a trade-off in storage device performance and design selection.
Abstract not provided.
Abstract not provided.
Abstract not provided.
2019 IEEE Electric Ship Technologies Symposium, ESTS 2019
Pulsed power loads (PPLs) are highly non-linear and can cause significant stability and power quality issues in a microgrid. One way to mitigate many of these issues is by designing an Energy Storage System (ESS) to offset the PPL. This paper provides a baseline for ESS control and specifications to mitigate the effects of PPL's. ESS will maintain a constant bus voltage and decouple the generation sources from the PPL. The ESS specifications are realized with ideal, band-limited hybrid battery and flywheels models and simulated to demonstrate the efficacy of the control system.
International Journal of Energy
Our work extends the concepts and tools of Hamiltonian Surface Shaping and Power Flow Control (HS SPFC) for electro-mechanical (EM) systems(i.e., adiabatic irreversible work processes and Hamiltonian natural systems)to Exergy Surface Shaping and Thermodynamic Flow Control (ESSTFC) for electro-mechanical-thermal (EMT) systems (i.e., irreversible work processes with heat and mass flows). The extension of HSSPFC requires the development of exergy potential functions, irreversible entropy production terms of the entropy balance equation to obtain the exergy destruction terms for inclusion in the exergy balance equation, and variational principles for producing consistent equations of motion for coupled EMT systems. The Hamiltonian for natural EM systems is an exergy potential function which leaves the development of exergy potential functions for the thermal part of the coupled models. This development is completed by integrating the exergy function over the control volume subject to the modeling assumptions. The irreversible entropy production terms are the exergy destruction terms of the exergy balance equation and the generalization of the mechanical dissipation and electrical resistance within EM systems. These generalized dissipation terms enable the derivation of a consistent set of coupled equations of motion for EMT systems. For this paper, Extended Irreversible Thermodynamics will be utilized to produce consistent thermal equations of motion that directly include the exergy destruction terms. There are several variational principles that are available for application to EMT systems. We focus on the variational principles developed by Biot and Fung [1, 2]. Furthermore, a simplified EMT system that models the EMT dynamics of a Navy ship equipped with a railgun is used to demonstrate the application of ESSTFC for designing high performance, stable nonlinear controllers for EMT systems.
Journal of Marine Science and Engineering
The dynamic model ofWave Energy Converters (WECs) may have nonlinearities due to several reasons such as a nonuniform buoy shape and/or nonlinear power takeoff units. This paper presents the Hamiltonian Surface-Shaping (HSS) approach as a tool for the analysis and design of nonlinear control of WECs. The Hamiltonian represents the stored energy in the system and can be constructed as a function of the WEC's system states, its position, and velocity. The Hamiltonian surface is defined by the energy storage, while the system trajectories are constrained to this surface and determined by the power flows of the applied non-conservative forces. The HSS approach presented in this paper can be used as a tool for the design of nonlinear control systems that are guaranteed to be stable. The optimality of the obtained solutions is not addressed in this paper. The case studies presented here cover regular and irregular waves and demonstrate that a nonlinear control system can result in a multiple fold increase in the harvested energy.
SPEEDAM 2018 - Proceedings: International Symposium on Power Electronics, Electrical Drives, Automation and Motion
Through the use of advanced control techniques, wave energy converters have significantly improved energy absorption. The motion of the WEC device is a significant contribution to the energy absorbed by the device. Reactive control (complex conjugate control) maximizes the energy absorption due to the impedance matching. The issue with complex conjugate control is that the controller is non-causal, which requires prediction into the oncoming waves to the device. This paper explores the potential of using system identification (SID) techniques to build a causal transfer function that approximates the complex conjugate controller over a specific frequency band of interest. The resulting controller is stable, and the average efficiency of the power captured by the causal controller is 99%, when compared to the non-causal complex conjugate.
Proceedings of the American Control Conference
This paper presents a control design methodology that addresses high penetration of variable generation or renewable energy sources and loads for networked AC /DC microgrid systems as an islanded subsystem or as part of larger electric power grid systems. High performance microgrid systems that contain large amounts of stochastic sources and loads is a major goal for the future of electric power systems. Alternatively, methods for controlling and analyzing AC/ DC microgrid systems will provide an understanding into the tradeoffs that can be made during the design phase. This method develops both a control design methodology and realizable hierarchical controllers that are based on the Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) methodology that regulates renewable energy sources, varying loads and identifies energy storage requirements for a networked AC/DC microgrid system. Both static and dynamic stability conditions are derived. A renewable energy scenario is considered for a networked three DC microgrids tied into an AC ringbus configuration. Numerical simulation results are presented.
Abstract not provided.
Abstract not provided.
Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME
This paper presents a solution to the optimal control problem of a three degrees-of-freedom (3DOF) wave energy converter (WEC). The three modes are the heave, pitch, and surge. The dynamic model is characterized by a coupling between the pitch and surge modes, while the heave is decoupled. The heave, however, excites the pitch motion through nonlinear parametric excitation in the pitch mode. This paper uses Fourier series (FS) as basis functions to approximate the states and the control. A simplified model is first used where the parametric excitation term is neglected and a closed-form solution for the optimal control is developed. For the parametrically excited case, a sequential quadratic programming approach is implemented to solve for the optimal control numerically. Numerical results show that the harvested energy from three modes is greater than three times the harvested energy from the heave mode alone. Moreover, the harvested energy using a control that accounts for the parametric excitation is significantly higher than the energy harvested when neglecting this nonlinear parametric excitation term.
International Journal of Electrical Power and Energy Systems
This paper presents a novel approach to the modeling and control of AC microgrids that contain spinning machines, power electronic inverters and energy storage devices. The inverters in the system can adjust their frequencies and power angles very quickly, so the modeling focuses on establishing a common reference frequency and angle in the microgrid based on the spinning machines. From this dynamic model, nonlinear Hamiltonian surface shaping and power flow control method is applied and shown to stabilize. From this approach the energy flow in the system is used to show the energy storage device requirements and limitations for the system. This paper first describes the model for a single bus AC microgrid with a Hamiltonian control, then extends this model and control to a more general class of multiple bus AC microgrids. Simulation results demonstrate the efficacy of the approach in stabilizing and optimization of the microgrid.
Abstract not provided.