Characterization of Additively Manufactured Samples with Mechanical Testing and Nondestructive Inspection Techniques ? A Path Forward for Qualification
Abstract not provided.
Abstract not provided.
With the recent advances in additive manufacturing (AM), long-range periodic lattice assemblies are being developed for vibration and shock mitigation components in aerospace and military applications with unique geometric and topological structures. There has been extensive work in understanding the static properties associated with varying topology of these lattice architectures, but there is almost no understanding of microstructural affects in such structures under high-strain rate dynamic loading conditions. Here we report the shock behavior of lattices with varying intrinsic grain structures achieved by post process annealing. High resolution 316L stainless steel lattices were 3D printed by a laser-powder bed fusion machine and characterized by computed tomography. Subsequent annealing resulted in stress-relieved and recrystallized lattices. Overall the lattices had strong cubic texture aligning with the x-, y- and z-directions of the build with a preference outside the build direction (z). The recrystallized sample had more equiaxed polygonal grains and a layer of BCC ferrite at the surface of the structure approximately 1 grain thick. Upon dynamic compression the as-deposited lattice showed steady compaction behavior while the heat-treated lattices exhibit negative velocity behavior indicative of failure. We attribute this to the stiffer BCC ferrite in the annealed lattices becoming damaged and fragmenting during compression.
Abstract not provided.
Abstract not provided.
Combustion and Flame
Validated models of melt cast explosives exposed to accidental fires are essential for safety analysis. In the current work, we provide several experiments that can be used to develop and validate cookoff models of melt cast explosives such as Comp-B3 composed of 60:40 wt% RDX:TNT. We present several vented and sealed experiments from 2.5 mg to 4.2 kg of Comp-B3 in several configurations. We measured pressure, spatial temperature, and ignition time. Some experiments included borescope images obtained during both vented and sealed decomposition. We observed the TNT melt, the suspension of RDX particles in the melt, bubble formation caused by RDX decomposition, and bubble-induced mixing of the suspension. The RDX suspension did not completely dissolve, even as temperatures approached ignition. Our results contrast with published measurements of RDX solubility in hot TNT that suggest RDX would be completely dissolved at these high temperatures. These different observations are attributed to sample purity. We did not observe significant movement of the two-phase mixture until decomposition gases formed bubbles. Bubble generation was inhibited in our sealed experiments and suppressed mixing.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Additive Manufacturing
Architected structural metamaterials, also known as lattice, truss, or acoustic materials, provide opportunities to produce tailored effective properties that are not achievable in bulk monolithic materials. These topologies are typically designed under the assumption of uniform, isotropic base material properties taken from reference databases and without consideration for sub-optimal as-printed properties or off-nominal dimensional heterogeneities. However, manufacturing imperfections such as surface roughness are present throughout the lattices and their constituent struts create significant variability in mechanical properties and part performance. This study utilized a customized tensile bar with a gauge section consisting of five parallel struts loaded in a stretch (tensile) orientation to examine the impact of manufacturing heterogeneities on quasi-static deformation of the struts, with a focus on ultimate tensile strength and ductility. The customized tensile specimen was designed to prevent damage during handling, despite the sub-millimeter thickness of each strut, and to enable efficient, high-throughput mechanical testing. The strut tensile specimens and reference monolithic tensile bars were manufactured using a direct metal laser sintering (also known as laser powder bed fusion or selective laser melting) process in a precipitation hardened stainless steel alloy, 17-4PH, with minimum feature sizes ranging from 0.5-0.82 mm, comparable to minimum allowable dimensions for the process. Over 70 tensile stress-strain tests were performed revealing that the effective mechanical properties of the struts were highly stochastic, considerably inferior to the properties of larger as-printed reference tensile bars, and well below the minimum allowable values for the alloy. Pre- and post-test non-destructive analyses revealed that the primary source of the reduced properties and increased variability was attributable to heterogeneous surface topography with stress-concentrating contours and commensurate reduction in effective load-bearing area.
Abstract not provided.
Abstract not provided.
AIP Conference Proceedings
In the chemical transport field, such as petro-chemicals or food processing, there is a need to quantify the spatially varying temperature and phase state of the material within a cylindrical vessel, such as a pipeline, using non-invasive techniques. Using ultrasonic signals, which vary in time-of-flight, intensity, and wave characteristics based on the temperature and phase of a material, an automated technique is presented which can provide a non-axisymmetric map of the phase and temperature inside a cylindrical vessel within a single plane using exclusively information from the through-transmission wave and the external temperature profile. This research demonstrates the approach using an amorphous wax, due to its stable nature and ability to be reheated many times without changing the properties of the wax. Due to its amorphous nature, the wax transitions from a solid to a low-viscosity fluid over a range of temperatures. This behavior is similar to that of a thermoplastic and a slurry experiencing curing. As the spatial temperature within a container of wax increases the time of flight for an ultrasonic signal will change. Results presented indicate the ability of the investigated technique to map the temperature and phase change of the wax based solely on the ultrasonic signals and knowledge of the external temperature on the outer edge of the vessel.
AIP Conference Proceedings
Additively manufactured (AM) components often exhibit significant discontinuities and indications without a clear understanding of how they might affect the mechanical properties of a part during qualification and service. This uncertainty is unacceptable for the design and manufacturing of most aerospace components. Current research in both mechanical testing and nondestructive evaluation involves developing methods for characterizing and inspecting AM components as the use of such materials continues to rise. Although several AM manufacturing methods have been developed in recent decades, this paper focuses on AM production-ready processes for a direct metal laser sintering (DMLS) powder bed fusion machine and will provide background on Sandia National Laboratories' research efforts in this area. Tensile bar samples manufactured using the DMLS powder bed fusion method were inspected in this study, and the results of ultrasonic spectroscopy for assessing internal flaws will be presented. A combination of material property evaluation, microstructural characterization, and nondestructive inspection techniques will also be described. The results obtained from these material evaluation methods assist in determining inspection limits and methods for qualifying AM materials.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Solid Freeform Fabrication 2019: Proceedings of the 30th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2019
Measures of energy input and spatial energy distribution during laser powder bed fusion additive manufacturing have significant implications for the build quality of parts, specifically relating to formation of internal defects during processing. In this study, scanning electron microscopy was leveraged to investigate the effects of these distributions on the mechanical performance of parts manufactured using laser powder bed fusion as seen through the fracture surfaces resulting from uniaxial tensile testing. Variation in spatial energy density is shown to manifest in differences in defect morphology and mechanical properties. Computed tomography and scanning electron microscopy inspections revealed significant evidence of porosity acting as failure mechanisms in printed parts. These results establish an improved understanding of the effects of spatial energy distributions in laser powder bed fusion on mechanical performance.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.