Publications

Results 26–50 of 146

Search results

Jump to search filters

Single-camera, single-shot, time-resolved laser-induced incandescence decay imaging

Optics Letters

Mazumdar, Yi C.; Cenker, Emre; Richardson, Daniel R.; Kearney, S.P.; Halls, Benjamin R.; Skeen, Scott A.; Shaddix, Christopher R.; Guildenbecher, Daniel R.

Knowledge of soot particle sizes is important for understanding soot formation and heat transfer in combustion environments. Soot primary particle sizes can be estimated by measuring the decay of time-resolved laser-induced incandescence (TiRe-LII) signals. Existing methods for making planar TiRe-LII measurements require either multiple cameras or time-gate sweeping with multiple laser pulses, making these techniques difficult to apply in turbulent or unsteady combustion environments. Here, we report a technique for planar soot particle sizing using a single high-sensitivity, ultra-high-speed 10 MHz camera with a 50 ns gate and no intensifier. With this method, we demonstrate measurements of background flame luminosity, prompt LII, and TiRe-LII decay signals for particle sizing in a single laser shot. The particle sizing technique is first validated in a laminar non-premixed ethylene flame. Then, the method is applied to measurements in a turbulent ethylene jet flame.

More Details

High temperature gasification of high heating-rate chars using a flat-flame reactor

Applied Energy

Li, Tian; Niu, Yanqing; Wang, Liang; Shaddix, Christopher R.; Lovas, Terese

The increasing interest in gasification and oxy-fuel combustion of biomass has heightened the need for a detailed understanding of char gasification in industrially relevant environments (i.e., high temperature and high-heating rate). Despite innumerable studies previously conducted on gasification of biomass, very few have focused on such conditions. Consequently, in this study the high-temperature gasification behaviors of biomass-derived chars were investigated using non-intrusive techniques. Two biomass chars produced at a heating rate of approximately 104 K/s were subjected to two gasification environments and one oxidation environment in an entrained flow reactor equipped with an optical particle-sizing pyrometer. A coal char produced from a common U.S. low sulfur subbituminous coal was also studied for comparison. Both char and surrounding gas temperatures were precisely measured along the centerline of the furnace. Despite differences in the physical and chemical properties of the biomass chars, they exhibited rather similar reaction temperatures under all investigated conditions. On the other hand, a slightly lower particle temperature was observed in the case of coal char gasification, suggesting a higher gasification reactivity for the coal char. A comprehensive numerical model was applied to aid the understanding of the conversion of the investigated chars under gasification atmospheres. In addition, a sensitivity analysis was performed on the influence of four parameters (gas temperature, char diameter, char density, and steam concentration) on the carbon conversion rate. The results demonstrate that the gas temperature is the most important single variable influencing the gasification rate.

More Details

The effect of oxygen penetration on apparent pulverized coal char combustion kinetics

2018 Spring Technical Meeting of the Western States Section of the Combustion Institute, WSSCI 2018

Shaddix, Christopher R.; Hecht, Ethan S.; Gonzalo-Tirado, Cristina

Apparent char kinetic rates are commonly used to predict pulverized coal char burning rates. These kinetic rates quantify the char burning rate based on the temperature of the particle and the oxygen concentration at the particle surface, thereby inherently neglecting the impact of variations in the penetration of oxygen into the char on the predicted burning rate. To investigate the impact of variable extents of penetration during Zone II burning conditions, experimental measurements were performed of char particle combustion temperature and burnout for a common U.S. subbituminous coal burning in an optical laminar entrained flow reactor with either helium or nitrogen diluents. The combination of much higher thermal conductivity and mass diffusivity in the helium environments resulted in substantially cooler char combustion temperatures than in equivalent N2 environments. Measured char burnout was similar in the two environments for a given bulk oxygen concentration but was approximately 60% higher in helium environments for a given char combustion temperature. Detailed particle simulations of the experimental conditions confirmed a 60% higher burning rate in the helium environments as a function of char temperature, whereas catalyst theory predicts that the burning rate in helium could be as high as 90% greater than in nitrogen, in the limit of large Thiele modulus (i.e. near the diffusion limit). For application combustion in CO2 environments (e.g. for oxy-fuel combustion), these results demonstrate that due to differences in oxygen diffusivity the apparent char oxidation rates will be lower, but by no more than 9% relative to burning rates measured in nitrogen environments.

More Details

Validation and uncertainty quantification analysis (VUQ) of a char oxidation model

10th U.S. National Combustion Meeting

Diaz-Ibarra, Oscar; Spinti, Jennifer; Smith, Philip; Shaddix, Christopher R.; Hecht, Ethan S.

The Reacting Particle and Boundary Layer (RPBL) model computes the transient-state conditions for a spherical, reacting, porous char particle and its reacting boundary layer. RPBL computes the transport of gaseous species with a Maxwell-Stefan multicomponent approach. Mass transfer diffusion coefficients are corrected to account for a non-stagnant bulk flow condition using a factor based on the Sherwood number. The homogeneous gas phase reactions are modeled with a syngas mechanism, and the heterogeneous reactions are calculated with a six-step reaction mechanism. Both homogeneous and heterogeneous reaction mechanisms are implemented in Cantera. Carbon density (burnout) is computed using the Bhatia and Perlmutter model to estimate the evolution of the specific surface area. Energy equations are solved for the gas temperature and the particle temperature. The physical properties of the particle are computed from the fractions of ash, carbon, and voids in the particle. The void fraction is computed assuming a constant diameter particle during the reaction process. RPBL solves a particle momentum equation in order to estimate the position of the particle in a specific reactor. We performed a validation and uncertainty quantification study with RPBL using experimental char oxidation data obtained in an optically accessible, laminar, entrained flow reactor at Sandia National Laboratories. We used a consistency analysis to compare RPBL and experimental data (with its associated uncertainty) for three coal chars over a range of particle sizes. We found consistency for particle temperature and velocity across all experiments.

More Details

A new method to compute the proper radiant heat transfer correction of bare-wire thermocouple measurements

10th U.S. National Combustion Meeting

Shaddix, Christopher R.

The proper consideration of the radiation correction for bare-wire thermocouple measurements requires consideration of the convective and radiative heat transfer of the thermocouple with its surroundings, as well as conductive heat transfer between the thermocouple bead and the connecting thermocouple wires. This has rarely been considered in the past, and to do so has involved complex simulation of the complete thermocouple energy balance. This paper reports on a new, easy-to-implement approach for calculating the proper radiant correction for thermocouples, subject to uncertainties associated with the relevant thermocouple and gas properties and limitations to characterizing convective heat transfer to the thermocouple bead and wires via standard correlations. Examples of the radiation correction computed with this new method as a function of temperature and bead and wire size are given, and are compared with traditional approaches considering heat transfer around either the thermocouple bead or the thermocouple wire.

More Details

Comparative ignition tests of coal under oxy-fuel conditions in a standardized laboratory test rig

Fuel

Becker, A.; Schiemann, M.; Scherer, V.; Shaddix, Christopher R.; Haxter, D.; Mayer, J.

Ignitability is important to characterize pulverized coal combustion, as it is directly related to flame stability. The current work describes a practical test rig for rapid laboratory analysis of pulverized coal cloud ignition properties. The system has been designed for conventional coal combustion conditions using air as the oxidant. In the current work, the measurement principle of the device is described and its adaption to and applicability for oxy-fuel combustion tests is demonstrated. Four coals with different rank were measured in air and in oxy-fuel atmospheres containing 20–35 vol% O2 in CO2. The major influencing factors for the investigated samples were found to be the coal rank and the gas-phase oxygen concentration, while a minor influence of particle size was observed.

More Details

The effect of oxygen enrichment on soot formation and thermal radiation in turbulent, non-premixed methane flames

Proceedings of the Combustion Institute

Shaddix, Christopher R.; Williams, T.C.

A non-premixed coannular burner in which oxygen concentrations and oxidizer flow rates can be independently varied was developed to investigate the effects of turbulent mixing intensity from oxygen enrichment on soot formation and flame radiation. Local radiation intensities soot concentrations and soot temperatures were measured using a thin-film thermopile planar laser-induced incandescence and two-color imaging pyrometry respectively. The measurements showed that soot formation increased as the oxygen concentration decreases from 100% to 50% helping to moderate a decrease in overall flame radiation. An increase in turbulence intensity had a remarkable effect on flame height soot formation and thermal radiation resulting to decreases in all of these parameters. The soot temperature decreased with a decrease in the oxygen concentration and increased with an increase in turbulent mixing intensity. Thus properly designed oxygen-enriched burners that enhance soot formation for intermediate levels of oxygen purity may be able to achieve thermal radiation intensities as high as 85% of traditional oxy-fuel burners utilizing high-purity oxygen.

More Details

Kinetic modeling of the formation and growth of inorganic nano-particles during pulverized coal char combustion in O2/N2 and O2/CO2 atmospheres

Combustion and Flame

Niu, Yanqing; Wang, Shuai; Shaddix, Christopher R.; Hui, Shi'En

In this formation of nano-particles during coal char combustion, the vaporization of inorganic components in char and the subsequent homogeneous particle nucleation, heterogeneous condensation, coagulation, and coalescence play decisive roles. Furthermore, conventional measurements cannot provide detailed information on the dynamics of nano-particle formation and evolution, In this study, a sophisticated intrinsic char kinetics model that considers ash effects (including ash film formation, ash dilution, and ash vaporization acting in tandem), both oxidation and gasification by CO2 and H2O, homogeneous particle nucleation, heterogeneous vapor condensation, coagulation, and and coalescence mechanisms is developed and used to compare the temporal evolution of the number and size of nano-particles during coal char particle combustion as a function of char particle size, ash content, and oxygen content in O2/N2 and O2/CO2 atmospheres .

More Details

Quantifying soot concentrations in turbulent non-premixed jet flames

2016 Spring Technical Meeting of the Western States Section of the Combustion Institute, WSSCI 2016

Shaddix, Christopher R.; Zhang, Jiayao; Williams, T.C.

Truly quantifying soot concentrations within turbulent flames is a difficult prospect. Laser extinction measurements are constrained by spatial resolution limitations and by uncertainty in the local soot extinction coefficient. Laser-induced incandescence (LII) measurements rely on calibration against extinction and thereby are plagued by uncertainty in the extinction coefficient. In addition, the LII measurements are subject to signal trapping in flames with significant soot concentrations and/or flame widths. In the study reported here, a turbulent ethylene non-premixed jet flame (jet exit Reynolds number of 20,000) is investigated by a combination of LII and full-flame HeNe laser (633 nm) extinction measurements. The LII measurements have been calibrated against extinction measurements in a laminar ethylene flame. An extinction coefficient previously measured in laminar ethylene flames is used as the basis of the calibration. The time-Averaged LII data in the turbulent flame has been corrected for signal trapping, which is shown to be significant in this flame, and then the line-of-sight extinction for a theoretical 633 nm light source has been calculated acrob the LII-determined soot concentration field. Comparison of the LII-based extinction with that actual measured along the flame centerline is favorable, showing an average deviation of approximately 10%. This lends credence to the measured values of soot concentrations in the flame and also gives a good indication of the level of uncertainty in the measured soot concentrations, subject to the additional uncertainty in the previously measured extinction coefficient, estimated to be ±15%.

More Details

Novel metal-organic frameworks for efficient stationary sources via oxyfuel combustion

Nenoff, T.M.; Sava Gallis, Dorina F.; Parkes, Marie V.; Greathouse, Jeffery A.; Rodriguez, Mark A.; Paap, Scott M.; Williams, T.C.; Shaddix, Christopher R.

Oxy-fuel combustion is a well-known approach to improve the heat transfer associated with stationary energy processes. Its overall penetration into industrial and power markets is constrained by the high cost of existing air separation technologies for generating oxygen. Cryogenic air separation is the most widely used technology for generating oxygen but is complex and expensive. Pressure swing adsorption is a competing technology that uses activated carbon, zeolites and polymer membranes for gas separations. However, it is expensive and limited to moderate purity O₂ . MOFs are cutting edge materials for gas separations at ambient pressure and room temperature, potentially revolutionizing the PSA process and providing dramatic process efficiency improvements through oxy-fuel combustion. This LDRD combined (1) MOF synthesis, (2) gas sorption testing, (3) MD simulations and crystallography of gas siting in pores for structure-property relationship, (4) combustion testing and (5) technoeconomic analysis to aid in real-world implementation.

More Details
Results 26–50 of 146
Results 26–50 of 146