Publications

Results 51–66 of 66

Search results

Jump to search filters

xLPR Scenario Analysis Report

Eckert, Aubrey C.; Lewis, John R.; Brooks, Dusty M.; Martin, Nevin S.; Hund, Lauren H.; Clark, Andrew; Mariner, Paul M.

This report describes the methods, results, and conclusions of the analysis of 11 scenarios defined to exercise various options available in the xLPR (Extremely Low Probability of Rupture) Version 2 .0 code. The scope of the scenario analysis is three - fold: (i) exercise the various options and components comprising xLPR v2.0 and defining each scenario; (ii) develop and exercise methods for analyzing and interpreting xLPR v2.0 outputs ; and (iii) exercise the various sampling options available in xLPR v2.0. The simulation workflow template developed during the course of this effort helps to form a basis for the application of the xLPR code to problems with similar inputs and probabilistic requirements and address in a systematic manner the three points covered by the scope.

More Details

Error Analysis of CM Data Products Sources of Uncertainty

Hunt, Brian D.; Eckert, Aubrey C.; Cochran, Lainy D.; Kraus, Terrence D.; Allen, Mark B.; Beal, Bill; Okada, Colin; Simpson, Mathew

This goal of this project is to address the current inability to assess the overall error and uncertainty of data products developed and distributed by DOE’s Consequence Management (CM) Program. This is a widely recognized shortfall, the resolution of which would provide a great deal of value and defensibility to the analysis results, data products, and the decision making process that follows this work. A global approach to this problem is necessary because multiple sources of error and uncertainty contribute to the ultimate production of CM data products. Therefore, this project will require collaboration with subject matter experts across a wide range of FRMAC skill sets in order to quantify the types of uncertainty that each area of the CM process might contain and to understand how variations in these uncertainty sources contribute to the aggregated uncertainty present in CM data products. The ultimate goal of this project is to quantify the confidence level of CM products to ensure that appropriate public and worker protections decisions are supported by defensible analysis.

More Details

Application of principal component analysis (PCA) and improved joint probability distributions to the inverse first-order reliability method (I-FORM) for predicting extreme sea states

Ocean Engineering

Eckert, Aubrey C.; Sallaberry, Cedric J.; Dallman, Ann R.; Neary, Vincent S.

Environmental contours describing extreme sea states are generated as the input for numerical or physical model simulations as a part of the standard current practice for designing marine structures to survive extreme sea states. These environmental contours are characterized by combinations of significant wave height (Hs) and either energy period (Te) or peak period (Tp) values calculated for a given recurrence interval using a set of data based on hindcast simulations or buoy observations over a sufficient period of record. The use of the inverse first-order reliability method (I-FORM) is a standard design practice for generating environmental contours. This paper develops enhanced methodologies for data analysis prior to the application of the I-FORM, including the use of principal component analysis (PCA) to create an uncorrelated representation of the variables under consideration as well as new distribution and parameter fitting techniques. These modifications better represent the measured data and, therefore, should contribute to the development of more realistic representations of environmental contours of extreme sea states for determining design loads for marine structures.

More Details

Modified Inverse First Order Reliability Method (I-FORM) for Predicting Extreme Sea States

Eckert, Aubrey C.; Sallaberry, Cedric J.; Dallman, Ann R.; Neary, Vincent S.

Environmental contours describing extreme sea states are generated as the input for numerical or physical model simulation s as a part of the stand ard current practice for designing marine structure s to survive extreme sea states. Such environmental contours are characterized by combinations of significant wave height ( ) and energy period ( ) values calculated for a given recurrence interval using a set of data based on hindcast simulations or buoy observations over a sufficient period of record. The use of the inverse first - order reliability method (IFORM) i s standard design practice for generating environmental contours. In this paper, the traditional appli cation of the IFORM to generating environmental contours representing extreme sea states is described in detail and its merits and drawbacks are assessed. The application of additional methods for analyzing sea state data including the use of principal component analysis (PCA) to create an uncorrelated representation of the data under consideration is proposed. A reexamination of the components of the IFORM application to the problem at hand including the use of new distribution fitting techniques are shown to contribute to the development of more accurate a nd reasonable representations of extreme sea states for use in survivability analysis for marine struc tures. Keywords: In verse FORM, Principal Component Analysis , Environmental Contours, Extreme Sea State Characteri zation, Wave Energy Converters

More Details

SOARCA Peach Bottom Atomic Power Station Long-Term Station Blackout Uncertainty Analysis: Convergence of the Uncertainty Results

Bixler, Nathan E.; Osborn, Douglas M.; Sallaberry, Cedric J.; Eckert, Aubrey C.; Mattie, Patrick D.

This paper describes the convergence of MELCOR Accident Consequence Code System, Version 2 (MACCS2) probabilistic results of offsite consequences for the uncertainty analysis of the State-of-the-Art Reactor Consequence Analyses (SOARCA) unmitigated long-term station blackout scenario at the Peach Bottom Atomic Power Station. The consequence metrics evaluated are individual latent-cancer fatality (LCF) risk and individual early fatality risk. Consequence results are presented as conditional risk (i.e., assuming the accident occurs, risk per event) to individuals of the public as a result of the accident. In order to verify convergence for this uncertainty analysis, as recommended by the Nuclear Regulatory Commission’s Advisory Committee on Reactor Safeguards, a ‘high’ source term from the original population of Monte Carlo runs has been selected to be used for: (1) a study of the distribution of consequence results stemming solely from epistemic uncertainty in the MACCS2 parameters (i.e., separating the effect from the source term uncertainty), and (2) a comparison between Simple Random Sampling (SRS) and Latin Hypercube Sampling (LHS) in order to validate the original results obtained with LHS. Three replicates (each using a different random seed) of size 1,000 each using LHS and another set of three replicates of size 1,000 using SRS are analyzed. The results show that the LCF risk results are well converged with either LHS or SRS sampling. The early fatality risk results are less well converged at radial distances beyond 2 miles, and this is expected due to the sparse data (predominance of “zero” results).

More Details

Statistical analyses of plume composition and deposited radionuclide mixture ratios

Kraus, Terrence D.; Sallaberry, Cedric J.; Eckert, Aubrey C.; Brito, Roxanne B.; Hunt, Brian D.; Osborn, Douglas M.

A proposed method is considered to classify the regions in the close neighborhood of selected measurements according to the ratio of two radionuclides measured from either a radioactive plume or a deposited radionuclide mixture. The subsequent associated locations are then considered in the area of interest with a representative ratio class. This method allows for a more comprehensive and meaningful understanding of the data sampled following a radiological incident.

More Details
Results 51–66 of 66
Results 51–66 of 66