Considering Uncertainty and Risk in Public Protection Decisions
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Renewable Energy
Efficient design of wave energy converters requires an accurate understanding of expected loads and responses during the deployment lifetime of a device. A study has been conducted to better understand best-practices for prediction of design responses in a wave energy converter. A case-study was performed in which a simplified wave energy converter was analyzed to predict several important device design responses. The application and performance of a full long-term analysis, in which numerical simulations were used to predict the device response for a large number of distinct sea states, was studied. Environmental characterization and selection of sea states for this analysis at the intended deployment site were performed using principle-components analysis. The full long-term analysis applied here was shown to be stable when implemented with a relatively low number of sea states and convergent with an increasing number of sea states. As the number of sea states utilized in the analysis was increased, predicted response levels did not change appreciably. However, uncertainty in the response levels was reduced as more sea states were utilized.
The goal of this project is to develop and execute methods for characterizing uncertainty in data products that are deve loped and distributed by the DOE Consequence Management (CM) Program. A global approach to this problem is necessary because multiple sources of error and uncertainty from across the CM skill sets contribute to the ultimate p roduction of CM data products. This report presents the methods used to develop a probabilistic framework to characterize this uncertainty and provides results for an uncertainty analysis for a study scenario analyzed using this framework.
Abstract not provided.
This report contains work completed by a group of student interns during the summer of 2017. Under the guidance of Ryan Coe, Aubrey Eckert-Gallup, and Nevin Martin, a series of interrelated projects were completed on topics relating to extreme response and survival analysis of wave energy converters (WECs). Jarred Canning studied long-term design response analysis methods for WECs. Sam Edwards studied how variation in the selection of an environmental contour affects the characterization of WEC response in extreme conditions. Sam also led the integration of various components of this report and overall editing. Tyler Esterly produced a catalog of analyses for different ocean sites. Bibiana Seng studied clustering analyses for comparing the wave environments of different ocean sites. Lori Smith performed a comparison between analyses conducted using spectral wave data and analyses using deterministic time-domain wave data. William ("Zach") Stuart studied the sensitivity and convergence of environmental contour methods.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.