Publications

Results 76–100 of 115

Search results

Jump to search filters

Rapid microchip-based electrophoretic immunoassays for the detection of swine influenza virus

Lab on a Chip

Reichmuth, David S.; Wang, Serena K.; Barrett, Louise M.; Throckmorton, Daniel J.; Einfeld, Wayne E.; Singh, Anup K.

Towards developing rapid and portable diagnostics for detecting zoonotic diseases, we have developed microchip-based electrophoretic immunoassays for sensitive and rapid detection of viruses. Two types of microchip-based electrophoretic immunoassays were developed. The initial assay used open channel electrophoresis and laser-induced fluorescence detection with a labeled antibody to detect influenza virus. However, this assay did not have adequate sensitivity to detect viruses at relevant concentrations for diagnostic applications. Hence, a novel assay was developed that allows simultaneous concentration and detection of viruses using a microfluidic chip with an integrated nanoporous membrane. The size-exclusion properties of the in situ polymerized polyacrylamide membrane are exploited to simultaneously concentrate viral particles and separate the virus/fluorescent antibody complex from the unbound antibody. The assay is performed in two simple steps-addition of fluorescently labeled antibodies to the sample, followed by concentration of antibody-virus complexes on a porous membrane. Excess antibodies are removed by electrophoresis through the membrane and the complex is then detected downstream of the membrane. This new assay detected inactivated swine influenza virus at a concentration four times lower than that of the open-channel electrophoresis assay. The total assay time, including device regeneration, is six minutes and requires <50 μl of sample. The filtration effect of the polymer membrane eliminates the need for washing, commonly required with surface-based immunoassays, increasing the speed of the assay. This assay is intended to form the core of a portable device for the diagnosis of high-consequence animal pathogens such as foot-and-mouth disease. The electrophoretic immunoassay format is rapid and simple while providing the necessary sensitivity for diagnosis of the illness state. This would allow the development of a portable, cost-effective, on-site diagnostic system for rapid screening of large populations of livestock, including sheep, pigs, cattle, and potentially birds. © The Royal Society of Chemistry.

More Details

Selective extraction of recombinant proteins by multiple-affinity two-phase partitioning in microchannels

12th International Conference on Miniaturized Systems for Chemistry and Life Sciences - The Proceedings of MicroTAS 2008 Conference

Meagher, Robert M.; Light, Yooli K.; Singh, Anup K.

We have demonstrated purification of proteins in a simple aqueous two-phase extraction process in a microfluidic device. The laminar flows inherent to microchannels allows us to perform a binary split of a complex cell lysate sample, in an open channel with no chromatography support and no moving parts. This mild process allows recovery of functional proteins with a modest increase in purity. Aromatic-rich fusion tags are used to drive partitioning of enzymes in a generic PEG-salt two-phase system. Addition of affinity ligands to the PEG phase allows us to exploit other popular fusion tags, such as polyhistidine tags and GST-tags. © 2008 CBMS.

More Details

Precise microscale polymer gradients applied to isoelectric focusing and pore limit electrophoresis

12th International Conference on Miniaturized Systems for Chemistry and Life Sciences - The Proceedings of MicroTAS 2008 Conference

Sommer, G.J.; Singh, Anup K.; Hatch, Anson H.

We demonstrate the power of our technique for establishing and immobilizing well-defined polymer gradients in microchannels by fabricating two miniaturized analytical platforms: microscale immobilized pH gradients (μIPGs) for rapid and high resolution isoelectric focusing (IEF) applications, and polyacrylamide porosity gradients to achieve microscale pore limit electrophoresis (μPLE) in which species are separated based on molecular size by driving them toward the pore size at which migration ceases. Both separation techniques represent the first microscale implementation of their respective methodologies.

More Details

Ultra-rapid sample preconcentration under slant field using high-aspect-ratio nanoporous membranes

12th International Conference on Miniaturized Systems for Chemistry and Life Sciences - The Proceedings of MicroTAS 2008 Conference

Wang, Ying-Chih W.; Singh, Anup K.; Hatch, Anson H.

We describe a novel approach to fabricate high-aspect-ratio membranes in microchannels by direct laser scanning, and demonstrate >10-fold improvement in sample preconcentration speed by achieving lower fM detection of proteins within 5 minutes. The integrated device can be used for continuous sample preparation, injection, preconcentration, and biochemical binding/reaction applications. © 2008 CBMS.

More Details

Ultra-rapid sample preconcentration under slant field using high-aspect-ratio nanoporous membranes

12th International Conference on Miniaturized Systems for Chemistry and Life Sciences - The Proceedings of MicroTAS 2008 Conference

Wang, Ying C.; Singh, Anup K.; Hatch, Anson H.

We describe a novel approach to fabricate high-aspect-ratio membranes in microchannels by direct laser scanning, and demonstrate >10-fold improvement in sample preconcentration speed by achieving lower fM detection of proteins within 5 minutes. The integrated device can be used for continuous sample preparation, injection, preconcentration, and biochemical binding/reaction applications. © 2008 CBMS.

More Details

Continuous-Flow Detector for Rapid Pathogen Identification

Skulan, Andrew S.; Barrett, Louise B.; Singh, Anup K.

This report describes the continued development of a low-power, portable detector for the rapid identification of pathogens such as B. anthracis and smallpox. Based on our successful demonstration of the continuous filter/concentrator inlet, we believe strongly that the inlet section will enable differentiation between viable and non-viable populations, between types of cells, and between pathogens and background contamination. Selective, continuous focusing of particles in a microstream enables highly selective and sensitive identification using fluorescently labeled antibodies and other receptors such as peptides, aptamers, or small ligands to minimize false positives. Processes such as mixing and lysing will also benefit from the highly localized particle streams. The concentrator is based on faceted prisms to contract microfluidic flows while maintaining uniform flowfields. The resulting interfaces, capable of high throughput, serve as high-, low-, and band-pass filters to direct selected bioparticles to a rapid, affinity-based detection system. The proposed device is superior to existing array-based detectors as antibody-pathogen binding can be accomplished in seconds rather than tens of minutes or even hours. The system is being designed to interface with aerosol collectors under development by the National Laboratories or commercial systems. The focused stream is designed to be interrogated using diode lasers to differentiate pathogens by light scattering. Identification of particles is done using fluorescently labeled antibodies to tag the particles, followed by multiplexed laser-induced fluorescence (LIF) detection (achieved by labeling each antibody with a different dye).

More Details

Global analysis of heat shock response in Desulfovibrio vulgaris Hildenborough

Journal of Bacteriology

Chhabra, Swapnil R.; He, Q.; Huang, K.H.; Gaucher, Sara P.; Alm, E.J.; He, Z.; Hadi, M.Z.; Hazen, T.C.; Wall, J.D.; Zhou, J.; Arkin, A.P.; Singh, Anup K.

Desulfovibrio vulgaris Hildenborough belongs to a class of sulfate-reducing bacteria (SRB) and is found ubiquitously in nature. Given the importance of SRB-mediated reduction for bioremediation of metal ion contaminants, ongoing research on D. vulgaris has been in the direction of elucidating regulatory mechanisms for this organism under a variety of stress conditions. This work presents a global view of this organism's response to elevated growth temperature using whole-cell transcriptomics and proteomics tools. Transcriptional response (1.7-fold change or greater; Z ≥ 1.5) ranged from 1,135 genes at 15 min to 1,463 genes at 120 min for a temperature up-shift of 13°C from a growth temperature of 37°C for this organism and suggested both direct and indirect modes of heat sensing. Clusters of orthologous group categories that were significantly affected included posttranslational modifications; protein turnover and chaperones (up-regulated); energy production and conversion (down-regulated), nucleotide transport, metabolism (down-regulated), and translation; ribosomal structure; and biogenesis (down-regulated). Analysis of the genome sequence revealed the presence of features of both negative and positive regulation which included the CIRCE element and promoter sequences corresponding to the alternate sigma factors σ32 and σ54. While mechanisms of heat shock control for some genes appeared to coincide with those established for Escherichia coli and Bacillus subtilis, the presence of unique control schemes for several other genes was also evident. Analysis of protein expression levels using differential in-gel electrophoresis suggested good agreement with transcriptional profiles of several heat shock proteins, including DnaK (DVU0811), HtpG (DVU2643), HtrA (DVU1468), and AhpC (DVU2247). The proteomics study also suggested the possibility of posttranslational modifications in the chaperones DnaK, AhpC, GroES (DVU1977), and GroEL (DVU1976) and also several periplasmic ABC transporters. Copyright © 2006, American Society for Microbiology. All Rights Reserved.

More Details
Results 76–100 of 115
Results 76–100 of 115