Publications

Results 276–300 of 9,998

Search results

Jump to search filters

Characterization and Optimization of Building Blocks for Specialized Computing Platforms

Ruzic, Brandon R.; Young, Kevin C.; Metodi, Tzvetan S.

As noise limits the performance of quantum processors, the ability to characterize this noise and develop methods to overcome it is essential for the future of quantum computing. In this report, we develop a complete set of tools for improving quantum processor performance at the application level, including low-level physical models of quantum gates, a numerically efficient method of producing process matrices that span a wide range of model parameters, and full-channel quantum simulations. We then provide a few examples of how to use these tools to study the effects of noise on quantum circuits.

More Details

Enabling Particulate Materials Processing Science for High-Consequence, Small-Lot Precision Manufacturing

Bolintineanu, Dan S.; Lechman, Jeremy B.; Bufford, Daniel C.; Clemmer, Joel T.; Cooper, Marcia A.; Erikson, William W.; Silling, Stewart A.; Oliver, Michael S.; Chavez, Andres A.; Schmalbach, Kevin; Mara, Nathan A.

This Laboratory Directed Research and Development project developed and applied closely coupled experimental and computational tools to investigate powder compaction across multiple length scales. The primary motivation for this work is to provide connections between powder feedstock characteristics, processing conditions, and powder pellet properties in the context of powder-based energetic components manufacturing. We have focused our efforts on multicrystalline cellulose, a molecular crystalline surrogate material that is mechanically similar to several energetic materials of interest, but provides several advantages for fundamental investigations. We report extensive experimental characterization ranging in length scale from nanometers to macroscopic, bulk behavior. Experiments included nanoindentation of well-controlled, micron-scale pillar geometries milled into the surface of individual particles, single-particle crushing experiments, in-situ optical and computed tomography imaging of the compaction of multiple particles in different geometries, and bulk powder compaction. In order to capture the large plastic deformation and fracture of particles in computational models, we have advanced two distinct meshfree Lagrangian simulation techniques: 1.) bonded particle methods, which extend existing discrete element method capabilities in the Sandia-developed , open-source LAMMPS code to capture particle deformation and fracture and 2.) extensions of peridynamics for application to mesoscale powder compaction, including a novel material model that includes plasticity and creep. We have demonstrated both methods for simulations of single-particle crushing as well as mesoscale multi-particle compaction, with favorable comparisons to experimental data. We have used small-scale, mechanical characterization data to inform material models, and in-situ imaging of mesoscale particle structures to provide initial conditions for simulations. Both mesostructure porosity characteristics and overall stress-strain behavior were found to be in good agreement between simulations and experiments. We have thus demonstrated a novel multi-scale, closely coupled experimental and computational approach to the study of powder compaction. This enables a wide range of possible investigations into feedstock-process-structure relationships in powder-based materials, with immediate applications in energetic component manufacturing, as well as other particle-based components and processes.

More Details

Integrating PGAS and MPI-based Graph Analysis

Mccrary, Trevor M.; Devine, Karen D.; Younge, Andrew J.

This project demonstrates that Chapel programs can interface with MPI-based libraries written in C++ without storing multiple copies of shared data. Chapel is a language for productive parallel computing using global address spaces (PGAS). We identified two approaches to interface Chapel code with the MPI-based Grafiki and Trilinos libraries. The first uses a single Chapel executable to call a C function that interacts with the C++ libraries. The second uses the mmap function to allow separate executables to read and write to the same block of memory on a node. We also encapsulated the second approach in Docker/Singularity containers to maximize ease of use. Comparisons of the two approaches using shared and distributed memory installations of Chapel show that both approaches provide similar scalability and performance.

More Details

Adapting Secure MultiParty Computation to Support Machine Learning in Radio Frequency Sensor Networks

Berry, Jonathan W.; Ganti, Anand G.; Goss, Kenneth G.; Mayer, Carolyn D.; Onunkwo, Uzoma O.; Phillips, Cynthia A.; Saia, Jarared; Shead, Timothy M.

In this project we developed and validated algorithms for privacy-preserving linear regression using a new variant of Secure Multiparty Computation (MPC) we call "Hybrid MPC" (hMPC). Our variant is intended to support low-power, unreliable networks of sensors with low-communication, fault-tolerant algorithms. In hMPC we do not share training data, even via secret sharing. Thus, agents are responsible for protecting their own local data. Only the machine learning (ML) model is protected with information-theoretic security guarantees against honest-but-curious agents. There are three primary advantages to this approach: (1) after setup, hMPC supports a communication-efficient matrix multiplication primitive, (2) organizations prevented by policy or technology from sharing any of their data can participate as agents in hMPC, and (3) large numbers of low-power agents can participate in hMPC. We have also created an open-source software library named "Cicada" to support hMPC applications with fault-tolerance. The fault-tolerance is important in our applications because the agents are vulnerable to failure or capture. We have demonstrated this capability at Sandia's Autonomy New Mexico laboratory through a simple machine-learning exercise with Raspberry Pi devices capturing and classifying images while flying on four drones.

More Details

Topology Optimization with a Manufacturability Objective

Robbins, Joshua R.

Part distortion and residual stress are critical factors for metal additive manufacturing (AM) because they can lead to high failure rates during both manufacturing and service. We present a topology optimization approach that incorporates a fast AM process simulation at each design iteration to provide predictions of manufacturing outcomes (i.e., residual stress, distortion, residual elastic energy) that can be optimized or constrained. The details of the approach and implementation are discussed, and an example design is presented that illustrates the efficacy of the method.

More Details

Exploring wave propagation in heterogeneous metastructures using the relaxed micromorphic model

Journal of the Mechanics and Physics of Solids

Alberdi, Ryan A.; Robbins, Joshua R.; Walsh, Timothy W.; Dingreville, Remi P.

Metamaterials are artificial structures that can manipulate and control sound waves in ways not possible with conventional materials. While much effort has been undertaken to widen the bandgaps produced by these materials through design of heterogeneities within unit cells, comparatively little work has considered the effect of engineering heterogeneities at the structural scale by combining different types of unit cells. In this paper, we use the relaxed micromorphic model to study wave propagation in heterogeneous metastructures composed of different unit cells. We first establish the efficacy of the relaxed micromorphic model for capturing the salient characteristics of dispersive wave propagation through comparisons with direct numerical simulations for two classes of metamaterial unit cells: namely phononic crystals and locally resonant metamaterials. We then use this model to demonstrate how spatially arranging multiple unit cells into metastructures can lead to tailored and unique properties such as spatially-dependent broadband wave attenuation, rainbow trapping, and pulse shaping. In the case of the broadband wave attenuation application, we show that by building layered metastructures from different metamaterial unit cells, we can slow down or stop wave packets in an enlarged frequency range, while letting other frequencies through. In the case of the rainbow-trapping application, we show that spatial arrangements of different unit cells can be designed to progressively slow down and eventually stop waves with different frequencies at different spatial locations. Finally, in the case of the pulse-shaping application, our results show that heterogeneous metastructures can be designed to tailor the spatial profile of a propagating wave packet. Collectively, these results show the versatility of the relaxed micromorphic model for effectively and accurately simulating wave propagation in heterogeneous metastructures, and how this model can be used to design heterogeneous metastructures with tailored wave propagation functionalities.

More Details

FY2021 Q4: Demonstrate moving-grid multi-turbine simulations primarily run on GPUs and propose improvements for successful KPP-2 [Slides]

Adcock, Christiane; Ananthan, Shreyas; Berger-Vergiat, Luc B.; Brazell, Michael; Brunhart-Lupo, Nicholas; Hu, Jonathan J.; Knaus, Robert C.; Melvin, Jeremy; Moser, Bob; Mullowney, Paul; Rood, Jon; Sharma, Ashesh; Thomas, Stephen; Vijayakumar, Ganesh; Williams, Alan B.; Wilson, Robert; Yamazaki, Ichitaro Y.; Sprague, Michael

Isocontours of Q-criterion with velocity visualized in the wake for two NREL 5-MW turbines operating under uniform-inflow wind speed of 8 m/s. Simulation performed with the hybrid-Nalu-Wind/AMR-Wind solver.

More Details

Demonstrate moving-grid multi-turbine simulations primarily run on GPUs and propose improvements for successful KPP-2

Adcock, Christiane; Ananthan, Shreyas; Berget-Vergiat, Luc; Brazell, Michael; Brunhart-Lupo, Nicholas; Hu, Jonathan J.; Knaus, Robert C.; Melvin, Jeremy; Moser, Bob; Mullowney, Paul; Rood, Jon; Sharma, Ashesh; Thomas, Stephen; Vijayakumar, Ganesh; Williams, Alan B.; Wilson, Robert; Yamazaki, Ichitaro Y.; Sprague, Michael

The goal of the ExaWind project is to enable predictive simulations of wind farms comprised of many megawatt-scale turbines situated in complex terrain. Predictive simulations will require computational fluid dynamics (CFD) simulations for which the mesh resolves the geometry of the turbines, capturing the thin boundary layers, and captures the rotation and large deflections of blades. Whereas such simulations for a single turbine are arguably petascale class, multi-turbine wind farm simulations will require exascale-class resources.

More Details

Modeling and Assessment of Atomic Precision Advanced Manufacturing (APAM) Enabled Vertical Tunneling Field Effect Transistor

International Conference on Simulation of Semiconductor Processes and Devices, SISPAD

Gao, Xujiao G.; Mendez Granado, Juan P.; Lu, Tzu-Ming L.; Anderson, Evan M.; Campbell, DeAnna M.; Ivie, Jeffrey A.; Schmucker, Scott W.; Grine, Albert D.; Lu, Ping L.; Tracy, Lisa A.; Arghavani, Reza A.; Misra, Shashank M.

The atomic precision advanced manufacturing (APAM) enabled vertical tunneling field effect transistor (TFET) presents a new opportunity in microelectronics thanks to the use of ultra-high doping and atomically abrupt doping profiles. We present modeling and assessment of the APAM TFET using TCAD Charon simulation. First, we show, through a combination of simulation and experiment, that we can achieve good control of the gated channel on top of a phosphorus layer made using APAM, an essential part of the APAM TFET. Then, we present simulation results of a preliminary APAM TFET that predict transistor-like current-voltage response despite low device performance caused by using large geometry dimensions. Future device simulations will be needed to optimize geometry and doping to guide device design for achieving superior device performance.

More Details

Quantum Transport Simulations for Si:P δ-layer Tunnel Junctions

International Conference on Simulation of Semiconductor Processes and Devices, SISPAD

Mendez Granado, Juan P.; Gao, Xujiao G.; Mamaluy, Denis M.; Misra, Shashank M.

We present an efficient self-consistent implementation of the Non-Equilibrium Green Function formalism, based on the Contact Block Reduction method for fast numerical efficiency, and the predictor-corrector approach, together with the Anderson mixing scheme, for the self-consistent solution of the Poisson and Schrödinger equations. Then, we apply this quantum transport framework to investigate 2D horizontal Si:P δ-layer Tunnel Junctions. We find that the potential barrier height varies with the tunnel gap width and the applied bias and that the sign of a single charge impurity in the tunnel gap plays an important role in the electrical current.

More Details

Sandia / IBM Discussion on Machine Learning for Materials Applications [Slides]

Littlewood, David J.; Wood, Mitchell A.; Montes de Oca Zapiain, David M.; Rajamanickam, Sivasankaran R.; Trask, Nathaniel A.

This report includes a compilation of several slide presentations: 1) Interatomic Potentials for Materials Science and Beyond–Advances in Machine Learned Spectral Neighborhood Analysis Potentials (Wood); 2) Agile Materials Science and Advanced Manufacturing through AI/ML (de Oca Zapiain); 3) Machine Learning for DFT Calculations (Rajamanickam); 4) Structure-preserving ML discovery of a quantum-to-continuum codesign stack (Trask); and 5) IBM Overview of Accelerated Discovery Technology (Pitera)

More Details
Results 276–300 of 9,998
Results 276–300 of 9,998