Publications

Results 5601–5700 of 9,998

Search results

Jump to search filters

Data privacy and security considerations for personal assistantsfor learning (PAL)

International Conference on Intelligent User Interfaces, Proceedings IUI

Raybourn, Elaine M.; Fabian, Nathan D.; Davis, Warren L.; Parks, Raymond C.; McClain, Jonathan T.; Trumbo, Derek T.; Regan, Damon; Durlach, Paula J.

A hypothetical scenario is utilized to explore privacy and security considerations for intelligent systems, such as a Personal Assistant for Learning (PAL). Two categories of potential concerns are addressed: factors facilitated by user models, and factors facilitated by systems. Among the strategies presented for risk mitigation is a call for ongoing, iterative dialog among privacy, security, and personalization researchers during all stages of development, testing, and deployment.

More Details

Memory errors in modern systems: The good, the bad, and the ugly

International Conference on Architectural Support for Programming Languages and Operating Systems - ASPLOS

Sridharan, Vilas; Debardeleben, Nathan; Blanchard, Sean; Ferreira, Kurt B.; Gurumurthi, Sudhanva; Shalf, John

Several recent publications have shown that hardware faults in the memory subsystem are commonplace. These faults are predicted to become more frequent in future systems that contain orders of magnitude more DRAM and SRAM than found in current memory subsystems. These memory subsystems will need to provide resilience techniques to tolerate these faults when deployed in high-performance computing systems and data centers containing tens of thousands of nodes. Therefore, it is critical to understand the efficacy of current hardware resilience techniques to determine whether they will be suitable for future systems. In this paper, we present a study of DRAM and SRAM faults and errors from the field. We use data from two leadership-class high-performance computer systems to analyze the reliability impact of hardware resilience schemes that are deployed in current systems. Our study has several key findings about the efficacy of many currently-deployed reliability techniques such as DRAM ECC, DDR address/command parity, and SRAM ECC and parity. We also perform a methodological study, and find that counting errors instead of faults, a common practice among researchers and data center operators, can lead to incorrect conclusions about system reliability. Finally, we use our data to project the needs of future large-scale systems. We find that SRAM faults are unlikely to pose a significantly larger reliability threat in the future, while DRAM faults will be a major concern and stronger DRAM resilience schemes will be needed to maintain acceptable failure rates similar to those found on today's systems.

More Details

Microwave-driven coherent operation of a semiconductor quantum dot charge qubit

Nature Nanotechnology

Laros, James H.; Kim, Dohun; Ward, D.R.; Simmons, C.B.; Blume-Kohout, Robin J.; Nielsen, Erik N.; Savage, D.E.; Lagally, M.G.; Friesen, Mark; Coppersmith, S.N.; Eriksson, M.A.

An intuitive realization of a qubit is an electron charge at two well-defined positions of a double quantum dot. This qubit is simple and has the potential for high-speed operation because of its strong coupling to electric fields. However, charge noise also couples strongly to this qubit, resulting in rapid dephasing at all but one special operating point called the 'sweet spot'. In previous studies d.c. voltage pulses have been used to manipulate semiconductor charge qubits but did not achieve high-fidelity control, because d.c. gating requires excursions away from the sweet spot. Here, by using resonant a.c. microwave driving we achieve fast (greater than gigahertz) and universal single qubit rotations of a semiconductor charge qubit. The Z-axis rotations of the qubit are well protected at the sweet spot, and we demonstrate the same protection for rotations about arbitrary axes in the X-Y plane of the qubit Bloch sphere. We characterize the qubit operation using two tomographic approaches: standard process tomography and gate set tomography. Both methods consistently yield process fidelities greater than 86% with respect to a universal set of unitary single-qubit operations.

More Details

Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials

Journal of Computational Physics

Thompson, Aidan P.; Swiler, Laura P.; Trott, Christian R.; Foiles, Stephen M.; Tucker, G.J.

We present a new interatomic potential for solids and liquids called Spectral Neighbor Analysis Potential (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected onto a basis of hyperspherical harmonics in four dimensions. The bispectrum components are the same bond-orientational order parameters employed by the GAP potential [1]. The SNAP potential, unlike GAP, assumes a linear relationship between atom energy and bispectrum components. The linear SNAP coefficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. We demonstrate that a previously unnoticed symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of magnitude. We present results for a SNAP potential for tantalum, showing that it accurately reproduces a range of commonly calculated properties of both the crystalline solid and the liquid phases. In addition, unlike simpler existing potentials, SNAP correctly predicts the energy barrier for screw dislocation migration in BCC tantalum.

More Details

Using High Performance Computing to Examine the Processes of Neurogenesis Underlying Pattern Separation/Completion of Episodic Information

Aimone, James B.; Betty, Rita B.

Using High Performance Computing to Examine the Processes of Neurogenesis Underlying Pattern Separation/Completion of Episodic Information - Sandia researchers developed novel methods and metrics for studying the computational function of neurogenesis, thus generating substantial impact to the neuroscience and neural computing communities. This work could benefit applications in machine learning and other analysis activities.

More Details

CCC7 Cielo Report

Lofstead, Gerald F.

ASC Level 2 Milestone FY 2013 continuation. L2 revealed memory pressures from using in situ analysis; Developed tools to determine memory usage; Reduced memory footprint by more than 50%.

More Details

CCC7-119 Reactive Molecular Dynamics Simulations of Hot Spot Growth in Shocked Energetic Materials

Thompson, Aidan P.

The purpose of this work is to understand how defects control initiation in energetic materials used in stockpile components; Sequoia gives us the core-count to run very large-scale simulations of up to 10 million atoms and; Using an OpenMP threaded implementation of the ReaxFF package in LAMMPS, we have been able to get good parallel efficiency running on 16k nodes of Sequoia, with 1 hardware thread per core.

More Details

ASC-ATDM Performance Portability Requirements for 2015-2019

Edwards, Harold C.; Trott, Christian R.

This report outlines the research, development, and support requirements for the Advanced Simulation and Computing (ASC ) Advanced Technology, Development, and Mitigation (ATDM) Performance Portability (a.k.a., Kokkos) project for 2015 - 2019 . The research and development (R&D) goal for Kokkos (v2) has been to create and demonstrate a thread - parallel programming model a nd standard C++ library - based implementation that enables performance portability across diverse manycore architectures such as multicore CPU, Intel Xeon Phi, and NVIDIA Kepler GPU. This R&D goal has been achieved for algorithms that use data parallel pat terns including parallel - for, parallel - reduce, and parallel - scan. Current R&D is focusing on hierarchical parallel patterns such as a directed acyclic graph (DAG) of asynchronous tasks where each task contain s nested data parallel algorithms. This five y ear plan includes R&D required to f ully and performance portably exploit thread parallelism across current and anticipated next generation platforms (NGP). The Kokkos library is being evaluated by many projects exploring algorithm s and code design for NGP. Some production libraries and applications such as Trilinos and LAMMPS have already committed to Kokkos as their foundation for manycore parallelism an d performance portability. These five year requirements includes support required for current and antic ipated ASC projects to be effective and productive in their use of Kokkos on NGP. The greatest risk to the success of Kokkos and ASC projects relying upon Kokkos is a lack of staffing resources to support Kokkos to the degree needed by these ASC projects. This support includes up - to - date tutorials, documentation, multi - platform (hardware and software stack) testing, minor feature enhancements, thread - scalable algorithm consulting, and managing collaborative R&D.

More Details

On Bipartite Graphs Trees and Their Partial Vertex Covers

ACM Transactions on Algorithms

Caskurlu, Bugra; Mkrtchyan, Vahan; Parekh, Ojas D.; Subramani, K.

Graphs can be used to model risk management in various systems. Particularly, Caskurlu et al. in [7] have considered a system, which has threats, vulnerabilities and assets, and which essentially represents a tripartite graph. The goal in this model is to reduce the risk in the system below a predefined risk threshold level. One can either restricting the permissions of the users, or encapsulating the system assets. The pointed out two strategies correspond to deleting minimum number of elements corresponding to vulnerabilities and assets, such that the flow between threats and assets is reduced below the predefined threshold level. It can be shown that the main goal in this risk management system can be formulated as a Partial Vertex Cover problem on bipartite graphs. It is well-known that the Vertex Cover problem is in P on bipartite graphs, however; the computational complexity of the Partial Vertex Cover problem on bipartite graphs has remained open. In this paper, we establish that the Partial Vertex Cover problem is NP-hard on bipartite graphs, which was also recently independently demonstrated [N. Apollonio and B. Simeone, Discrete Appl. Math., 165 (2014), pp. 37–48; G. Joret and A. Vetta, preprint, arXiv:1211.4853v1 [cs.DS], 2012]. We then identify interesting special cases of bipartite graphs, for which the Partial Vertex Cover problem, the closely related Budgeted Maximum Coverage problem, and their weighted extensions can be solved in polynomial time. We also present an 8/9-approximation algorithm for the Budgeted Maximum Coverage problem in the class of bipartite graphs. We show that this matches and resolves the integrality gap of the natural LP relaxation of the problem and improves upon a recent 4/5-approximation.

More Details

Arctic Climate Systems Analysis

Ivey, Mark D.; Robinson, David G.; Boslough, Mark B.; Backus, George A.; Peterson, Kara J.; van Bloemen Waanders, Bart G.; Swiler, Laura P.; Desilets, Darin M.; Reinert, Rhonda K.

This study began with a challenge from program area managers at Sandia National Laboratories to technical staff in the energy, climate, and infrastructure security areas: apply a systems-level perspective to existing science and technology program areas in order to determine technology gaps, identify new technical capabilities at Sandia that could be applied to these areas, and identify opportunities for innovation. The Arctic was selected as one of these areas for systems level analyses, and this report documents the results. In this study, an emphasis was placed on the arctic atmosphere since Sandia has been active in atmospheric research in the Arctic since 1997. This study begins with a discussion of the challenges and benefits of analyzing the Arctic as a system. It goes on to discuss current and future needs of the defense, scientific, energy, and intelligence communities for more comprehensive data products related to the Arctic; assess the current state of atmospheric measurement resources available for the Arctic; and explain how the capabilities at Sandia National Laboratories can be used to address the identified technological, data, and modeling needs of the defense, scientific, energy, and intelligence communities for Arctic support.

More Details

A scalable solution framework for stochastic transmission and generation planning problems

Computational Management Science

Munoz-Espinoza, Francisco D.; Watson, Jean-Paul W.

Current commercial software tools for transmission and generation investment planning have limited stochastic modeling capabilities. Because of this limitation, electric power utilities generally rely on scenario planning heuristics to identify potentially robust and cost effective investment plans for a broad range of system, economic, and policy conditions. Several research studies have shown that stochastic models perform significantly better than deterministic or heuristic approaches, in terms of overall costs. However, there is a lack of practical solution techniques to solve such models. In this paper we propose a scalable decomposition algorithm to solve stochastic transmission and generation planning problems, respectively considering discrete and continuous decision variables for transmission and generation investments. Given stochasticity restricted to loads and wind, solar, and hydro power output, we develop a simple scenario reduction framework based on a clustering algorithm, to yield a more tractable model. The resulting stochastic optimization model is decomposed on a scenario basis and solved using a variant of the Progressive Hedging (PH) algorithm. We perform numerical experiments using a 240-bus network representation of the Western Electricity Coordinating Council in the US. Although convergence of PH to an optimal solution is not guaranteed for mixed-integer linear optimization models, we find that it is possible to obtain solutions with acceptable optimality gaps for practical applications. Our numerical simulations are performed both on a commodity workstation and on a high-performance cluster. The results indicate that large-scale problems can be solved to a high degree of accuracy in at most 2 h of wall clock time.

More Details

A study of the viability of exploiting memory content similarity to improve resilience to memory errors

International Journal of High Performance Computing Applications

Levy, Scott; Ferreira, Kurt; Bridges, Patrick G.; Thompson, Aidan P.; Trott, Christian R.

Building the next-generation of extreme-scale distributed systems will require overcoming several challenges related to system resilience. As the number of processors in these systems grow, the failure rate increases proportionally. One of the most common sources of failure in large-scale systems is memory. In this paper, we propose a novel runtime for transparently exploiting memory content similarity to improve system resilience by reducing the rate at which memory errors lead to node failure. We evaluate the viability of this approach by examining memory snapshots collected from eight high-performance computing (HPC) applications and two important HPC operating systems. Based on the characteristics of the similarity uncovered, we conclude that our proposed approach shows promise for addressing system resilience in large-scale systems.

More Details

Toward an evolutionary task parallel integrated MPI + X Programming Model

Proceedings of the 6th International Workshop on Programming Models and Applications for Multicores and Manycores, PMAM 2015

Barrett, Richard F.; Stark, Dylan S.; Vaughan, Courtenay T.; Grant, Ryan E.; Olivier, Stephen L.; Laros, James H.

The Bulk Synchronous Parallel programming model is showing performance limitations at high processor counts. We propose over-decomposition of the domain, operated on as tasks, to smooth out utilization of the computing resource, in particular the node interconnect and processing cores, and hide intra- and inter-node data movement. Our approach maintains the existing coding style commonly employed in computational science and engineering applications. Although we show improved performance on existing computers, up to 131,072 processor cores, the effectiveness of this approach on expected future architectures will require the continued evolution of capabilities throughout the codesign stack. Success then will not only result in decreased time to solution, but would also make better use of the hardware capabilities and reduce power and energy requirements, while fundamentally maintaining the current code configuration strategy.

More Details

Nested Narratives Final Report

Wilson, Andrew T.; Pattengale, Nicholas D.; Forsythe, James C.; Carvey, Brad

In cybersecurity forensics and incident response, the story of what has happened is the most important artifact yet the one least supported by tools and techniques. Existing tools focus on gathering and manipulating low-level data to allow an analyst to investigate exactly what happened on a host system or a network. Higher-level analysis is usually left to whatever ad hoc tools and techniques an individual may have developed. We discuss visual representations of narrative in the context of cybersecurity incidents with an eye toward multi-scale illustration of actions and actors. We envision that this representation could smoothly encompass individual packets on a wire at the lowest level and nation-state-level actors at the highest. We present progress to date, discuss the impact of technical risk on this project and highlight opportunities for future work.

More Details
Results 5601–5700 of 9,998
Results 5601–5700 of 9,998